The tables below summarizes the measurements for the 5 and
8 mhz systems
There are two sets of calibration data for 5MHz:
transmitter |
1 |
2 |
3 |
4 |
5 |
6 |
rad or tangential |
t,x |
r,y |
t,x |
r,y |
t,x |
r,y |
tower |
1a |
1b |
3a |
3b |
5a |
5b |
initial phase (as lead)
(deg) |
0 |
-90 |
-240 |
-330 |
-120 |
-210 |
initial phase (as
lag) (deg) (1*) |
0 |
90 |
240 |
330 |
120 |
210 |
lambda/2 heliax
correction (2*) |
0 |
0 |
0 |
180 |
180 |
180 |
radial fed to inward
pointing dipole (3*) |
0 |
180 |
0 |
180 |
0 |
180 |
req Phase at output |
0 |
270 |
240 |
330 |
300 |
210 |
req phase using tx 2 as
reference |
90 |
0 |
330 |
60 |
30 |
300 |
phase used. |
114 |
0 |
346.5 |
63 |
86 |
313 |
output phase measured |
90 |
0 |
330 |
60 |
30 |
300 |
transmitter |
1 |
2 |
3 |
4 |
5 |
6 |
rad or tangential |
t,x |
r,y |
t,x |
r,y |
t,x |
r,y |
tower |
1a |
1b |
3a |
3b |
5a |
5b |
initial phase (as lead)
(deg) |
0 |
90 |
240 |
330 |
120 |
210 |
initial phase (as
lag) (deg) (1*) |
0 |
-90 |
-240 |
-330 |
-120 |
-210 |
lambda/2 heliax
correction (2*) |
0 |
0 |
0 |
180 |
180 |
180 |
radial fed to inward
pointing dipole (3*) |
0 |
180 |
0 |
180 |
0 |
180 |
req Phase at output |
0 |
90 |
120 |
30 |
60 |
150 |
req phase using tx 2 as
reference |
270 |
0 |
30 |
300 |
330 |
60 |
phase used. |
300 |
0 |
56 |
301 |
21 |
81 |
output phase measured |
279 |
0 |
30 |
300 |
330 |
60 |
transmitter |
1 |
2 |
3 |
4 |
5 |
6 |
rad or tangential |
t,x |
r,y |
t,x |
r,y |
t,x |
r,y |
tower |
1a |
1b |
3a |
3b |
5a |
5b |
initial phase (as lead)
(deg) |
0 |
-90 |
-240 |
-330 |
-120 |
-210 |
initial phase (as
lag) (deg) (1*) |
0 |
90 |
240 |
330 |
120 |
210 |
lambda/2 heliax
correction (2*) |
0 |
0 |
0 |
180 |
180 |
180 |
radial fed to inward
pointing dipole (3*) |
0 |
180 |
0 |
180 |
0 |
180 |
req Phase at output |
0 |
270 |
240 |
330 |
300 |
210 |
req phase using tx 2 as
reference |
90 |
0 |
330 |
60 |
30 |
300 |
phase used. |
106 |
0 |
345.5 |
57 |
72.5 |
297 |
output phase measured |
91.8 |
0 |
329.7 |
62 |
29.8 |
299.5 |
transmitter |
1 |
2 |
3 |
4 |
5 |
6 |
rad or tangential |
t,x |
r,y |
t,x |
r,y |
t,x |
r,y |
tower |
1a |
1b |
3a |
3b |
5a |
5b |
initial phase (as lead)
(deg) |
0 |
90 |
240 |
330 |
120 |
210 |
initial phase (as
lag) (deg) (1*) |
0 |
-90 |
-240 |
-330 |
-120 |
-210 |
lambda/2 heliax
correction (2*) |
0 |
0 |
0 |
180 |
180 |
180 |
radial fed to inward
pointing dipole (3*) |
0 |
180 |
0 |
180 |
0 |
180 |
req Phase at output |
0 |
90 |
120 |
30 |
60 |
150 |
req phase using tx 2 as
reference |
270 |
0 |
30 |
300 |
330 |
60 |
phase used. |
287.7 |
0 |
48 |
292 |
16 |
60 |
output phase measured |
269.5 |
0 |
29.9 |
300.6 |
330.3 |
60.1 |
transmitter |
1 |
2 |
3 |
4 |
5 |
6 |
radial or
tangential |
r,y |
t,x |
r,y |
t,x |
r,y |
t,x |
tower |
2a |
2b |
4a |
4b |
6a |
6b |
initial phase (as lead)
(deg) |
0 |
90 |
120 |
210 |
240 |
330 |
initial phase (as
lag) (deg) (1*) |
0 |
-90 |
-120 |
-210 |
-240 |
-330 |
lambda/2 heliax
correction (2*) |
0 |
0 |
180 |
180 |
0 |
0 |
radial fed to inward
pointing dipole (3*) |
180 |
0 |
180 |
0 |
180 |
0 |
req Phase at output |
180 |
270 |
240 |
330 |
300 |
30 |
req phase using tx 5 as
reference |
240 |
330 |
300 |
30 |
0 |
90 |
phase used. |
238 |
298 |
275 |
15 |
0 |
66.5 |
output phase measured |
240 |
330.5 |
300 |
30 |
0 |
90 |
transmitter |
1 |
2 |
3 |
4 |
5 |
6 |
radial or
tangential |
r,y |
t,x |
r,y |
t,x |
r,y |
t,x |
tower |
2a |
2b |
4a |
4b |
6a |
6b |
initial phase (as lead)
(deg) |
0 |
-90 |
-120 |
-210 |
-240 |
-330 |
initial phase (as
lag) (deg) (1*) |
0 |
90 |
120 |
210 |
240 |
330 |
lambda/2 heliax
correction (2*) |
0 |
0 |
180 |
180 |
0 |
0 |
radial fed to inward
pointing dipole (3*) |
180 |
0 |
180 |
0 |
180 |
0
|
req Phase at output |
180 |
90 |
120 |
30 |
60 |
330 |
req phase using tx 2 as
reference |
120 |
30 |
60 |
330 |
0 |
270 |
phase used. |
111 |
358 |
36 |
313 |
0 |
250.8 |
output phase measured |
120 |
30 |
60 |
330 |
0 |
270 |
transmitter |
1 |
2 |
3 |
4 |
5 |
6 |
radial or
tangential |
r,y |
t,x |
r,y |
t,x |
r,y |
t,x |
tower |
2a |
2b |
4a |
4b |
6a |
6b |
initial phase (as lead)
(deg) |
0 |
90 |
120 |
210 |
240 |
330 |
initial phase (as
lag) (deg) (1*) |
0 |
-90 |
-120 |
-210 |
-240 |
-330 |
lambda/2 heliax
correction (2*) |
0 |
0 |
180 |
180 |
0 |
0 |
radial fed to inward
pointing dipole (3*) |
180 |
0 |
180 |
0 |
180 |
0 |
req Phase at output |
180 |
270 |
240 |
330 |
300 |
30 |
req phase using tx 5 as
reference |
240 |
330 |
300 |
30 |
0 |
90 |
phase used. |
243.7 |
282.7 |
268.0 |
7.2 |
0 |
56.5 |
output phase measured |
239.8 |
330.1 |
300.0 |
30.2 |
0 |
90.0 |
transmitter |
1 |
2 |
3 |
4 |
5 |
6 |
radial or
tangential |
r,y |
t,x |
r,y |
t,x |
r,y |
t,x |
tower |
2a |
2b |
4a |
4b |
6a |
6b |
initial phase (as lead)
(deg) |
0 |
-90 |
-120 |
-210 |
-240 |
-330 |
initial phase (as
lag) (deg) (1*) |
0 |
90 |
120 |
210 |
240 |
330 |
lambda/2 heliax
correction (2*) |
0 |
0 |
180 |
180 |
0 |
0 |
radial fed to inward
pointing dipole (3*) |
180 |
0 |
180 |
0 |
180 |
0
|
req Phase at output |
180 |
90 |
120 |
30 |
60 |
330 |
req phase using tx 2 as
reference |
120 |
30 |
60 |
330 |
0 |
270 |
phase used. |
126.4 |
354.0 |
42.6 |
318.5 |
0 |
249.2 |
output phase measured |
120 |
30.1 |
60.0 |
330.0 |
0 |
270.0 |
15may19:
Frank and herb wanted to transmit linear polarization using 8mhz.. On 17mar17 we measured the phases needed to transmit linear polarization.
transmitter |
1 |
2 |
3 |
4 |
5 |
6 |
rad or tang |
r,y |
t,x |
r,y |
t,x |
r,y |
t,x |
tower |
2a |
2b |
4a |
4b |
6a |
6b |
initial phase (deg) |
0 |
0 |
240 |
120 |
120 |
-120 |
lead to lag for siggen |
0 |
0 |
-480 |
-240 |
-240 |
240 |
lambda/2 heliax correction |
0 |
0 |
180 |
180 |
0 |
0 |
radial fed to inward pointing dipole |
180 |
0 |
180 |
0 |
180 |
0 |
req Phase at output |
180 |
0 |
120 |
60 |
60 |
120 |
req phase using tx 5
as reference |
120 |
300 |
60 |
0 |
0 |
60 |
phase used. |
111 |
248 |
29.3 |
335 |
ref |
24 |
output phase
measured |
120.1 |
-60.8 |
60.1 |
1.8 |
ref |
59.8 |
processing: x101/170317/franklin.pro,
x101/Y15/150325/hfphase.pro
redid computations more legibly 21may19 ..
x101/hf/plotphase/linphase.pro
transmitter |
1 |
2 |
3 |
4 |
5 |
6 |
rad or tangential |
r,y |
t,x |
r,y |
t,x |
r,y |
t,x |
tower |
2a |
2b |
4a |
4b |
6a |
6b |
initial phase (deg) |
0 |
0 |
312. |
192. |
192 |
312 |
lead to lag for siggen | 0 |
0 |
-624 |
-384 |
-384 |
-624 |
lambda/2 heliax correction |
0 |
0 |
180 |
180 |
0 |
0 |
radial fed to inward pointing dipole |
180 |
0 |
180 |
0 |
180 |
0 |
req Phase at output |
180 |
0 |
48 |
-12 |
-12 |
-312 |
req phase using tx 5 as
reference |
192 |
12 |
60 |
0 |
0 |
60 |
phase used. |
ref |
ref |
||||
output phase measured
(not yet..) |
The nrl siggen: when you put in 90 degrees,
that goes in as wt+phi.. (a lead.. rather than a lag of the older
system)
transmitter |
1 |
2 |
3 |
4 |
5 |
6 |
rad or
tangential |
t,x |
r,y |
t,x |
r,y |
t,x |
r,y |
tower |
1a |
1b |
3a |
3b |
5a |
5b |
initial phase (as
lead) (deg) |
0 |
-90 |
-240 |
-330 |
-120 |
-210 |
initial phase
(as lead) (deg) (1*) |
0 |
-90 |
-240 |
-330 |
-120 |
-210 |
lambda/2 heliax
correction (2*) |
0 |
0 |
0 |
180 |
180 |
180 |
radial fed to inward
pointing dipole (3*) |
0 |
180 |
0 |
180 |
0 |
180 |
req Phase at output |
0 |
90 |
-240 |
-330 |
60 |
-210 |
req phase using tx 2
as reference |
270 |
0 |
30 |
300 |
330 |
60 |
phase used |
258 |
0 |
13 |
303 |
292 |
57 |
output phase measured |
270.7 |
0 |
29.5 |
299.9 |
329.3 |
60.1 |
output phase measured with old system using A/B.. |
90 |
0 |
330 |
60 |
30 |
300 |
transmitter |
1 |
2 |
3 |
4 |
5 |
6 |
rad or
tangential |
t,x |
r,y |
t,x |
r,y |
t,x |
r,y |
tower |
1a |
1b |
3a |
3b |
5a |
5b |
initial phase (as
lead) (deg) |
0 |
-90 |
-240 |
-330 |
-120 |
-210 |
initial phase
(as lead) (deg) (1*) |
0 |
-90 |
-240 |
-330 |
-120 |
-210 |
lambda/2 heliax
correction (2*) |
0 |
0 |
0 |
180 |
180 |
180 |
radial fed to inward
pointing dipole (3*) |
0 |
180 |
0 |
180 |
0 |
180 |
req Phase at output |
0 |
90 |
-240 |
-330 |
120 |
-210 |
req phase using tx 2
as reference |
270 |
0 |
30 |
300 |
30 |
60 |
phase used |
258 |
0 |
13 |
303 |
348 |
57 |
output phase measured |
270.7 |
0 |
29.5 |
299.9 |
30 |
60.1 |
transmitter |
1 |
2 |
3 |
4 |
5 |
6 |
rad or
tangential |
t,x |
r,y |
t,x |
r,y |
t,x |
r,y |
tower |
1a |
1b |
3a |
3b |
5a |
5b |
initial phase (as
lead) (deg) |
0 |
90 |
240 |
330 |
120 |
210 |
initial phase
(as lead) (deg) (1*) |
0 |
90 |
240 |
330 |
120 |
210 |
lambda/2 heliax
correction (2*) |
0 |
0 |
0 |
180 |
180 |
180 |
radial fed to inward
pointing dipole (3*) |
0 |
180 |
0 |
180 |
0 |
180 |
req Phase at output |
0 |
-90 |
240 |
330 |
-120 |
210 |
req phase using tx 2
as reference |
90 |
0 |
330 |
60 |
330 |
300 |
phase used. |
259 |
0 |
45 |
298 |
339.8 |
41 |
output phase measured |
90.3 |
0 |
300.5 |
60.4 |
330.2 |
300.2 |
For the calibration use vmm with B/A
transmitter |
1 |
2 |
3 |
4 |
5 |
6 |
radial or
tangential |
r,y |
t,x |
r,y |
t,x |
r,y |
t,x |
tower |
2a |
2b |
4a |
4b |
6a |
6b |
initial phase (as lead)
(deg) |
0 |
90 |
120 |
210 |
240 |
330 |
initial phase (as
lag) (deg) (1*) |
0 |
90 |
120 |
210 |
240 |
330 |
lambda/2 heliax
correction (2*) |
0 |
0 |
180 |
180 |
0 |
0 |
radial fed to inward
pointing dipole (3*) |
180 |
0 |
180 |
0 |
180 |
0 |
req Phase at output |
180 |
90 |
120 |
30 |
60 |
330 |
req phase using tx 5 as
reference |
120 |
30 |
60 |
330 |
0 |
270 |
phase used. |
126 |
64 |
91 |
341 |
0 |
298 |
output phase measured |
119.5 |
30 |
60.8 |
-30.6 |
0 |
-90 |
transmitter |
1 |
2 |
3 |
4 |
5 |
6 |
radial or
tangential |
r,y |
t,x |
r,y |
t,x |
r,y |
t,x |
tower |
2a |
2b |
4a |
4b |
6a |
6b |
initial phase (as lead)
(deg) |
0 |
-90 |
-120 |
-210 |
-240 |
-330 |
initial phase (as
lag) (deg) (1*) |
0 |
-90 |
-120 |
-210 |
-240 |
-330 |
lambda/2 heliax
correction (2*) |
0 |
0 |
180 |
180 |
0 |
0 |
radial fed to inward
pointing dipole (3*) |
180 |
0 |
180 |
0 |
180 |
0
|
req Phase at output |
180 |
270 |
240 |
330 |
300 |
30 |
req phase using tx 2 as
reference |
240 |
330 |
300 |
30 |
0 |
90 |
phase used. |
||||||
output phase measured |
I wrote a short idl program to plot the output Efield of the 6 dipoles given various phase offsets.
How the program works:
Running the program will generate the Efield
of each tower, and a circle of radius 3 (def for amp=[1,1,1]) with
a white vector sweeping around at 10sec/rotation.
The plotted symbols are:
Running the program:
5mhz |
tower Order |
txOrder |
posAngDeg |
xPh |
yPh |
rcpRot lcpAct |
T1,T5,T3 |
(1,2),(5,6),(3,4) |
[0,120,240] |
yPh + 90 |
-[0,120,240] |
lcpRot rcpAct |
T1,T3,T5 |
(1,2),(3,4),(5,6) |
-[0,120,240] |
yPh - 90 |
-[0,120,240] |
8Mhz |
|||||
rcpRot lcpAct |
T6,T4,T2 |
(5,6),(3,4),(1,2) |
[0,120,240] |
yPh + 90 |
-[0,120,240] |
lcpRot rcpAct |
T6,T2,T4 |
(5,6),(1,2),(3,4) |
-[0,120,240] |
yPh - 90 |
-[0,120,240] |