P50 scan19: full dish scan, the best fit sphere, surface errors.

11mar20

last update: 24apr20

Links
    clipping using xyz distances
        xy projection of points  (.png)
        xz projection of points (.png)
    fitting the data to a sphere
        Table of coef
            plots show the 10 iterations of each fit (.ps) (.pdf)  (21mar10 added histogram of errors)
        Results of fit
            do the weights make a difference?
        Location of points that were excluded by the 2 fits
            xy image of points after 3 and 4 parameter fits (.png)
            histogram of points after fits vs xy radius (.ps) (.pdf)
        Surface errors from Fit residuals(scanner orientation)
             Surface radial errors using 4 parameter fit (.png)
             Surface radial errors using 3 parameter fit (.png)
        Surface errors  on the dish (n/s orientation) keep up to 5cm
             radial surface errors < 5cm, rotated to n/s orientation (.png)
      
Gain loss from the surface errors
        Summary

Other p50 pages
    p50 main page
    20200311 p50 scanning from ao9 main page
  Facts:


Intro

    Scan 19 was a full 360 degree scan of the dish using 270 m ranging mode, high sensitivity, and 4mm spacing at 10m. It was used to fit a sphere to the data.

Two separate fits to a sphere were done:

The main reason for the fits was to find the offset of the laser scanner relative to the dish.
The 4 parameter fit (which included the radius) was  included:

    The scan was a complete 360 degree scan. We only wanted to fit the part of the data that  corresponded to the dish so we clipped data by elevation range and xy radius. There were still points that did not lie on the dish. To remove them:


Processing scan19


    Scan 19 was the last scan taken. It start around 12:00 pm.  It setup was:

Clipping the data use xyradius and elevation range.

    The first round of clipping just used geometrical distances to remove points not on the dish:

z range
-.7 to 47 meters
xy radius
150 meters
elevation range
-20 to 18 degrees

After clipping the points went from 51297801 to 16322830

The images show the xy and xz  projections before and after the clipping. colors were used to show why the points were clipped

xy projection of points  (.png)
xz projection of points (.png)


Fitting a sphere to the clipped data.

The plots show the 10 iterations of each fit (.ps) (.pdf)

The table below has the coef  values and sigmas  for each iteration of the fits

coef/sigmas from 4 parameter fit

X0
(m)
sigX
(m)
Y0
(m)
sigY
(m)
Z0
(m)
sigZ
(m)
Radius
(m)
sigRadius
(m)
fitErr
(m)
Npnts
(m)
1 0.0232 0.0041 0.0170 0.0041 265.3739 0.0198 265.9683 0.0184 0.6441 16322830
2 0.0204 0.0041 0.0210 0.0041 264.4986 0.0192 265.1918 0.0179 0.1116 16021857
3 0.0205 0.0041 0.0209 0.0041 264.4083 0.0197 265.1117 0.0184 0.0178 15888141
4 0.0206 0.0041 0.0205 0.0041 264.4131 0.0197 265.1161 0.0184 0.0094 15714213
5 0.0210 0.0041 0.0193 0.0041 264.4095 0.0199 265.1124 0.0185 0.0074 15302483
6 0.0212 0.0041 0.0186 0.0041 264.4073 0.0200 265.1100 0.0186 0.0065 14960690
7 0.0212 0.0042 0.0182 0.0041 264.4059 0.0200 265.1086 0.0187 0.0060 14734489
8 0.0213 0.0042 0.0179 0.0042 264.4049 0.0201 265.1076 0.0187 0.0057 14597749
9 0.0212 0.0042 0.0178 0.0042 264.4044 0.0201 265.1070 0.0188 0.0056 14521312
10 0.0212 0.0042 0.0177 0.0042 264.4040 0.0202 265.1067 0.0188 0.0055 14479594
coef/sigmas from 3 parameter fit (R0=265.176m)

X0
(m)
sigX
(m)
Y0
(m)
sigY
(m)
Z0
(m)
sigZ
(m)
Radius
(m)
sigRadius
(m)
fitErr
(m)
Npnts
(m)
1 0.0219 0.0041 0.0178 0.0041 264.5256 0.0011 265.1760 0.0000 0.6477 16322830
2 0.0204 0.0041 0.0210 0.0041 264.4814 0.0011 265.1760 0.0000 0.1083 16018940
3 0.0206 0.0041 0.0208 0.0041 264.4772 0.0011 265.1760 0.0000 0.0181 15885711
4 0.0208 0.0041 0.0205 0.0041 264.4773 0.0011 265.1760 0.0000 0.0103 15707567
5 0.0211 0.0041 0.0200 0.0041 264.4775 0.0011 265.1760 0.0000 0.0086 15359749
6 0.0212 0.0041 0.0200 0.0041 264.4777 0.0011 265.1760 0.0000 0.0080 15115956
7 0.0213 0.0041 0.0201 0.0041 264.4777 0.0011 265.1760 0.0000 0.0077 14980718
8 0.0213 0.0041 0.0202 0.0041 264.4777 0.0011 265.1760 0.0000 0.0075 14911581
9 0.0213 0.0041 0.0202 0.0041 264.4777 0.0011 265.1760 0.0000 0.0074 14877046
10 0.0213 0.0041 0.0202 0.0041 264.4777 0.0011 265.1760 0.0000 0.0074 14860694

Notes:

Results of fit:

Do the weights make a difference?

Compare Fits with Weights and no Weights [meters]

3 param fit
4param fit

x0
y0
z0
r
x0
y0
z0
r
noWeights
.0213
.0212
264.4756
265.176
.0213
.0177
264.3974
265.1007
with Weights
.0213 .0202 264.4778 265.176 .0212 .0177 264.4040 265.1067
W-NoW
.0
-.001
.0022
-
-,0001
0
.0066
.006

the plot shows a histogram of the points vs xy  radius and the weights used (.ps) (.pdf)

Location of points that were excluded by the 2 fits

xy image of points after 3 and 4 parameter fits (.png)

Histogram of points after fit exclusion  (.ps) (.pdf)


Surface errors from using the fit residuals

    The points that were left after iterating the fits 10 times were  used to make an image of the dish errors.

Surface radial errors using 4 parameter fit (.png)

Surface radial errors using 3 parameter fit (.png)


Surface errors using all points < 5cm error 

    The radial error was computed  for all points using the 3 parameter fit center and the design radius of 265.176 meters.

The image shows the surface errors measured 11mar20 (.png)

processing: x101/p50/200311/doit.pro


Gain loss from the surface errors.

    The gain loss was computed using the measured radial errors. The processing was:
The plots show the gain loss results for beams centered on a  5x5 grid with 200 foot spacing (.ps) (.pdf)

The image gives a rough idea of what the gain loss should be at 6cm across the dish (.png)

processing: x101/p50/200311/gainloss.pro


Summary:

processing: x101/p50/200311/fitsphere/fitsphere_fit.pro, fitsphere_plt.pro,fitresidual_img.pro,


<- page up
home_~phil