MH AND LSFS: BLACK-BELT DETAILS

Carl Heiles (October 25, 2005)

Contents

1 INTRODUCTION 1
2 THE FITS FILE AND ITS m1 STRUCTURE 2
3 GSR/PROCS/INIT/HDR 3
3.1 Obtaining the RF and IF frequencies . . . . . .. ... ... ... ... ....... 3
3.2 The mh structure . . . . . . . . . L e 4
3.3 The ma structure . . . . . . . . . .. e 4

4 GSR/PROCS/INIT/LSFS—GENERATING THE LSFS FILE 5
4.1 Manual selection of files within a given day for LSFS processing . . . . . . . ... .. )
4.2 The LSFS save files . . . . . . . . . o o 6
4.3 The procedure Isfs.pro . . . . . . ... 6
4.3.1  mIto-mIs_SO.pro . . . . . .. e e e e e e e e 7

4.3.2  lsfsl.pro . . .. Lo e e e e 7

4.3.3  carl9.pro . . . .. e e e e 7

5 GSR/PROCS/INIT/LSFS—CORRECTING DATA FOR IF BANDPASSES
ETC 8

1. INTRODUCTION

This document is intended for people who know their way around the first two stages of GSR
reduction, which are the generation of mh and 1sfs files. It presents details that one might wish or
need to know to understand how things are done and what the potential problems and difficulties
are, or need to modify the software. In other words, it’s for the black-belt. Accordingly, we don’t
spend time defining a lot of things whose definitions can be found elsewhere, or even definitions
that are in the documentation of the procedures. In other words, use this in combination with



_92_

the existing documentation within the procedures. One convention: “nb” and “wb” are short for
“narrowband” and “wideband”, respectively.

2. THE FITS FILE AND ITS ml STRUCTURE

The fits files are read by the Goddard procedure mrdfits. Important note: a related procedure
is mrd_hread.pro, the Goddard version of which failed on one of our files. To avoid this failure
mode we must use a modified version which resides in ...gsr/procs/init/hdr, (putting it first
on our IDL path).

Convention: in this document we often specify paths by writing three dots before gsr. The
subdirectory gsr is the top of the tree that contains all software used in the GALFA data reduction,
and it might be installed on any machine (such as your own or one at Arecibo). At Arecibo, the gsr
directory tree has a version number suffix, and it is located in the /share/galfa/, so at the present
time of writing (25 Oct 2005), at Arecibo what we mean by ...gsr/ is /share/galfa/gsrl.1/.

We read the fits file and create a structure called m1. This is an array of length equal to
the number of records in the fits file, which are taken once per second. Normally the fits file is
10 minutes long and no datapoints are skipped, so normally it’s m1[600]. However, sometimes
there are fewer elements because datapoints are skipped and sometimes the file is cut short because
GALSPECT was stopped.

The details of the ml structure are given in Jeff Mock’s code that writes it; there’s a copy
in ...gsr/cl-1.0.0/src/gdiag/gfits.c. A complete set of Jeff’s software is on mofongo in
/mnt/disk2/jmock. Some of the more important tags in the m1 structure include the following:

1. data and g_wide are the 7679 and 512 channel nb and wb spectra, in long integers with offset
of —231,

2. g_seq is a sequence number. I'm not sure of the zero point. The sequence number is in-
cremented for each datapoint. Sometimes the net is too busy to write a datapoint, which is
skipped. If so, the recorded sequence number will skip. That is, the sequence number applies
to the datapoint whether or not is was recorded, so you can check for missing datapoints by
checking the sequence number.

3. crval2a, crval3a, crval2b, crval3b are ra, dec, az, and za respectively. There are time
delays so that they are not absolutely accurate. Correcting these inaccuracies is one of the
main reasons for the mh files.

4. alfa_ang is the rotation angle of the ALFA turret.

5. g_mix is the internal narrowband mixer frequency (lo3), known as digitalmix. The GALFA
memo “GALFA Spectrometer: Setup, Operations, Basics” explains how to set g_mix.



-3 -

6. g_lol and g_lo2 are the first and second LO frequencies. See GALFA memo “GALFA
Spectrometer: Setup, Operations, Basics” for an explanation of the mixing system.

7. g_postmis ra, dec and g_azzatm the az, za, but not at the exact 1 sec tick; they are corrected
in the mh header.

3. GSR/PROCS/INIT/HDR

These programs generate mh files, which contain the mh and mx structures. The mh structures
contain accurate time and position information and the mx structures contain statistical information
on data quality. The primary function of the mh structure is to define times and positions accurately.
The values in the original data from the fits file are not accurate because of delay problems in
obtaining and transmitting the data over the net.

Generating the mh file is normally done using the shell mh_wrap.pro, which reads the list of
fits files, invokes the workhorse m1_hdr.pro for each one, and writes the associated mh save file for
each one. See the document “HOW TO GENERATE MH AND LSFS FILES”.

3.1. Obtaining the RF and IF frequencies

The procedure bbifdftprops.pro calculates rf and if frequencies for each channel of the wb
and nb spectra. It also returns the theoretical bandpasses of those spectra. The inputs are all in
the m1 and mh structures except for the sidebands, which you must specify. See this procedure’s
documentation for details. You have to specify sidebands. Call the procedure this way:

sbl= -1.d
sb2= 1.d
sb_bb= -1.d

1lo2= mi[ 0, nspL0].g_lo2/1.d6
digitalmix= mi[ O, 0].g_mix/1.d6
lol= mi[ O,nspL0].g_lol/1.d6
bbifdftprops, sbl, sb2, sb_bb, lol, lo2, digitalmix, $
rffrq_wb, iflfrq_wb, bbfrq_wb, rffrq nb, iflifrqg_nb, bbfrq_nb, bbgain_dft_nb

Here, m1 is the structure that is read from the fits file; alternatively, you could get the l.o. frequency
from the mh structure.



_4 -

3.2. The mh structure

The mh structure is defined by mhdefine . pro. The important values are calculated inm1_hdr.pro.
The important tags include:

1. Various tags with the embedded word “stamp”. These are accurate values calculated from the
sequence number mi.g_seq (a running count of the number of 1-second GALSPECT records
written since midnight AST on a given day) using a complicated and involved least squares
fit. These include:

(a) utcstamp, the UTC since the beginning of 1971 in seconds;
(b) julstamp, the Julian date at UTCSTAMP (Julian days are for UTC in Greenwich);

(c) lstmeanstamp and lstappstamp, the mean and apparent LST for the particular utcstamp.

2. Four positions with the embedded word “halfsec”. GALSPECT records data once each sec-
ond. During this second the telescope usually moves; we average the positions at the beginning
and end of each second to obtain the mean position, equal to the position halfway through
the one second interval; thus the term “halfsec”. These positions are accurate, having been
corrected for sample jitter. Units are degrees for az, za, and dec; and hours for ra.

3. vlsr and vbary, the velocity of the telescope wrt LSR and the barycenter, respectively.
Calculated using chdoppler.pro.

4. pwr_wb and pwr_nb, the spectrum-integrated wb and nb powers in the original data units.

5. errs, a set of decoded (human-readable) errors from the original m1.g_err (which is not
human-readable). errs is a [6,2,7] array for each datapoint, 6 values of error for each of
the 2 pols and 7 beams. mh.errs is generated by error_decode.pro, whose documentation
describes the meanings in detail.

6. versiondate, the date of the software version (yyyymmdd). BE SURE TO CHANGE THIS
IF YOU MODIFY THE SOFTWARE!

In addition, most of the m1 header array data are repeated in the mh structure.

3.3. The mx structure

To interpret and examine the quantities in the mx structure, you can use the programs discussed
at length in the document “DOES EVERYTHING WORK PROPERLY? DO THESE CHECKS
ON EVERY DAY’S DATA!!”. There’s also a first attempt at a printed version for the diagnostics
in listmx.pro . This also discusses the diagnostics, and should be read before going further here.



-5

The mx structure is defined by mxdefine.pro. The important values are calculated in
rxdiagnostics.pro. It analyzes the time series of pwr_wb and pwr_nb. The important tags include:

1. julstamp, as defined above for the mh structure
2. ccfwb and ccfnb, the CCF between all pairs of the 14 receivers

3. feedbadwb and feedbadnb, an analyzed version of ccfwb and ccfnb to provide a simply-
interpretable result; this is currently not reliable or useful.

4. rmwratiowb and rmsrationb. for each receiver, use a 19-second median filter to remove drifts;
remove data whose residual exceeds 3o; select only the records not in calibrations. Then, for
each receiver calculate its rms divided by its mean and divide by the mean of that modified
data stream.

5. rxradarwb, rxradarnb, for each receiver a 2-element array, the first element is the period
in seconds and the second is the amplitude of that Fourier component divided by the mean

power.

6. sjuwv and sjunb, the crosscorrelation peak of a 12-s pulse train with the median-filtered
pwr_wb and pwr_nb, divided by the mean values of those pwr arrays. Negative values are
preserved in case the radar power saturates the receiver gain.

7. versiondate, the versionddate of the software.

4. GSR/PROCS/INIT/LSFS—GENERATING THE LSFS FILE

This section generates 1sfs save files, which use the SMARTF frequency switching calibration
to generate the bandpass shapes and also the factors to approximately convert spectral numbers to
temperature. The theory and practical details of the Least-Squares-Frequency-Switching (LSF'S,
a.k.a. SMARTF) are given in the galTechMemo_2005_01 entitled “Least Squares Frequency Switch-

ing”.

We generate Isfs files using the 1sfs_wrap procedure. Its inputs include the path and array of
fits files to be treated. See the document “HOW TO GENERATE MH AND LSFS FILES”.

4.1. Manual selection of files within a given day for LSFS processing

One problem that can occur: the software selects the LSFS files automatically, and these files
are big. If it selects too many the machine’s memory will be exceeded. If this happens you need to
intervene by hand and restrict the number of fits files by using a shorter, hand-determined list.



-6 —

You may need to manually select input files for LSFS if there are long stretches of contiguous
LSFS calibration; loading all these fits files would exceed the computer’s memory. If you need to
select the input files for LSFS manually, you produce a list of a few files that contain contiguous
LSFS calibration data that will be all treated as one group and averaged together. You use these
as input to 1sfs_shell, which oversees the LSFS calibration by invoking 1sfs, which is the “boss”
for the LSFS reduction; invoking ggnb_recon, which reconstructs the nb bandpass; and writing
out the save file.

4.2, The LSF'S save files

The save file is of the form
lsfs.yyyymmdd.tttttttttt.proj.nnnn.sav
where tttttttttt is the utcstamp for the first LSFS record (that’s the time in seconds since 1971),
and the other parameters come from the fits file that contains the first LSFS record. The utcstamp
is included to make it easier for future programs to select the nearest LSFS calibration.

4.3. The procedure Isfs.pro

1sfs.pro has as input the set of fits files containing one group’s worth of SMARTF data. It re-
turns both wb and nb i.f. filter shapes (ggwb[512,14,2], ggnb[480,14,2]), the r.f. spectra at each
of the 7 l.o. frequencies and cal on/off (rf4wb[512,14,7,2]", rf4nb[480,14,7,2]), the derived r.f.
spectra over all frequencies covered by the 7 l.o. frequencies (rfwb[543,14,2], rfnb[543,14,2]),
calibration factors, the nb baseband frequencies for each channel (bbfrq_nb[7679]), the nb theoret-
ical bandpass shape (bbgain_dft_nb[7679]), the r.f. frequencies for each channel (rffrq_wb[512],
rffrq_nb[7679]), and the cal deflections in original recorded units.

The astute reader will have noticed that the nb spectra have 7679 channels but we return
only 480 channels for ggnb and rf4nb. The reason is that the smallest l.o. separation in the series
of 7 l.o. LSFS frequencies is about 195 kHz, which corresponds to 224 nb channels. There is no
information on the frequency structure within this 224-channel range. We assume that there is no
structure on that frequency range and in ggnb_recon do a fancy-dancy interpolation to recover the
nb i.f. gain for all 7679 channels. THIS INTERPOLATION NEEDS TO BE REVISITED

As the boss, 1sfs.pro invokes the following procedures:

!The index order is [channels, 14 receivers, 7 lo frequencies, and cal on/off].



7

4.3.1.  ml_to-mls_s0.pro

This takes the entire array of m1 structures in the designated input files and filters them to
make sure which are really LSFS, creating the new array mls. In doing this it discards all leading
datapoints with CALON, all trailing ones with CALON in excess of 3 minutes (180 datapoints),
and incorporates an estimated time delay for the l.o. to change. It returns the m1s structure for
processing.

All of this would be better done in the program find_smartf because memory is an issue and
we would be saving fewer unused m1 datapoints in memory. This change should be incorporated
sometime.

4.8.2.  lsfsl.pro

This performs the awful job of deciding which records are indeed valid. It has to find 7 l.o.
frequencies that are used in LSF'S; determine which have cal ON and OFF; discard datapoints near
the transitions, because the transitions don’t occur on one-second ticks; and check to make sure
that data really are LSF'S and don’t simply have a bunch of different l.o. frequencies that were
used for a different purpose. I've tried to document the different tests within the code. These tests
are quite involved and complicated—if you have to work with them I hope the descriptions are
adequate, but you will probably need to sample some parameter values when reducing real data to
figure out what’s really happening.

One slightly tricky part in processing the wb and nb spectra is arithmetically using the long
integers, which are in the ml structure from the fits file. You can’t add many of these together
without overflowing the long integers. And if you convert them individually to floats you lose
accuracy; if you convert them to doubles it costs memory. See the code for the best technique.

One required operation that occurs in this program is averaging a number of one-second records
together. To accomplish this in IDL we use the total function. You have to be careful with memory
and computing speed, and the fact that the arrays are in long integers. To use total the best way:
total( long64( mis.g_wide)). Note the conversion from long to long64—important!!

4.3.3.  carl9.pro

carl9.pro does the actual LSFS solution, using the SVD technique described in
galTechMemo_2005_01. One important set of its inputs is the set of matrices and vectors involved
with the SVD matrix math. Those are called xmatrix, wgts, wgt_inv, and xxinv_svd, which

correspond to the quantities X, [W], [%], and o+ XT in equations 28 and 29 of that memo. These



-8 -

quantities are read from files on disk because they are computationally very expensive to calculate.
If you ever want to generate new ones, which would occur if you change the relative separations,
number, or sequence of the LO frequencies used in the calibration, you need to generate new ones
using xmatrixgen.pro. Here we don’t give the details on how to use it. In fact, it’s not documented
either; this needs work!

One important optional input is quiet. If this is not set, you can watch the convergence of the
iterations; it’s kind of fun (for a while). It probably takes longer to plot than to calculate, so. ..

5. GSR/PROCS/INIT/LSFS—CORRECTING DATA FOR IF BANDPASSES
ETC

After having derived the i.f. bandpasses we want to use them to get bandpass-corrected data—
after all, that’s the whole rationale for this mess! We do this with polycorr.pro, which is normally
invoked by mlpolycorr.pro. Inputs to mlpolycorr.pro include the Isfs file name, which file
contains the derived bandpasses, and the structure m1l which contains the spectra you want to
bandpass-correct. The important outputs that need explaining are generated by polycorr.pro
and are detailed below.

polycorr.pro does the work. It does the following:

1. An important function is to use the wb spectra to baseline-correct the nb spectra. We do this
by polyfitting the wb spectra. The polyfit coefficients need to carry over exactly from the wb
to the nb spectra. Each wb channel has the width of about 224 nb channels. To match things
up, we need to lump together 224 nb channels for each wb channel and be very careful about
getting the centering right. We do this by binning the rf frequencies of the nb spectra (called
rffrq_nb) to exactly (almost) match those of the wb spectra (called rffrq_wb). After this
binning operation, the nb spectra match the shapes of the wb spectra to a truly remarkable
degree of accuracy (which they should—because the nb spectra are digitally derived from the
same digital data stream as the wb spectra, and in particular the nb filter shape is defined
digitally).

231

2. Each wb and nb raw spectrum is incremented by the long integer offset , converted to

float, and divided by its appropriate i.f. bandpass.

3. There is a d.c. spike in channel 256 of each of the 512-channel wb spectra; we interpolate over
it.

4. We bin the nb spectra according to the above prescription, extract the ~ 33 nb binned
channels that correspond to the wb ones, and derive the ratio of powers, fctr = g—g. We

multiply all wb spectra by this factor to get it on the same power scale as the nb spectra.



-9 -

5. fctr is the factor by which the original wb spectra (after bandpass correction) were multiplied
to get them on the same scale as the nb spectra. That is, the output spectra are called swb_c
and snb_c; swb_c and its pre-polyfit channel-integrated power pwb_uc have been scaled by
fctr, so you can recover the original unscaled spectra and powers by dividing the returned
swb_c and pwb_uc by their appropriate fctr.

6. We fit an n'" degree polynomial (input parameter degree) to the wb spectrum and use the
very same coefficients to correct the nb spectrum. The wb spectrum is 100 MHz wide, the
narrow about 7 MHz wide. At the moment the default degree is 18. This is a problem—
instead of using a large degree we should use a smaller range in the wb spectrum. THIS
NEEDS INVESTIGATION-HIGH PRIORITY.

This research was supported in part by NSF grant AST 04-06987 and by the NAIC.



