

New “Bulldozer” and “Piledriver” Instructions
A step forward for high performance software development

Brent Hollingsworth

Software Program Manager

Advanced Micro Devices, Inc.

October 2012

Advanced Micro Devices, Inc. New “Bulldozer” and “Piledriver” Instructions 2

In 2011 AMD made a significant step for high performance software development with the release of the

AMD FX
TM

, AMD Opteron
TM

 6200 and AMD Opteron
TM

 4200 processors. Powered by the “Bulldozer” core,

these processors added support for a large number of instruction sets including SSE4.1/4.2, AES, CLMUL and

AVX. They also introduced two new instruction sets - FMA4 and XOP.

AMD is now taking another step forward with new processors powered by the “Piledriver” core. These

processors add support for an additional four instruction sets. Support for the new “Bulldozer” and

“Piledriver” instructions is shown below.

 “Bulldozer” “Piledriver”

FMA Fused Multiply Accumulate FMA3 FMA3, FMA4

XOP eXtended Operations � �

CVT16 Convert 16 �

BMI Bit Manipulation Instructions �

TBM Trailing Bit Manipulation �

This article will provide a brief introduction to the new instructions. Additional information about each

instruction can be obtained through your compiler vendor and the manuals listed in the Referernces section

at the end.

Intrinsics

When available, the examples and documentation below favor the C function wrappers provided by compiler

vendors called intrinsics over assembly. Intrinsic functions are available in most popular compilers including

GCC and Visual Studio. To use the newest instructions, you may need to update your compiler. The FMA4

instructions for example are first available in Visual Studio in Visual Studio 10 SP1. The examples below were

developed on Visual Studio 11 beta.

XMM / YMM Registers

While the BMI and TBM instructions operate on general purpose registers, the other new instructions

operate on 128-bit XMM and 256-bit YMM registers. These registers are most often subdivided into packed

data fields representing 8, 16, 32 and 64-bit data. Vector operations process these multiple values in parallel.

Scalar operations perform calculations only on the value in the lowest order position. The figure below

represents a 128 bit register with eight 16-bit values.

A B C D E F G H

“Bulldozer” and “Piledriver” Software Instructions

Advanced Micro Devices, Inc. New “Bulldozer” and “Piledriver” Instructions 3

Fused Multiply Accumulate instructions help provide performance and accuracy improvements for multiply-

add tasks commonly performed in scientific computing. Hardware support for these operations was first

added by AMD with the FMA4 instructions in the “Bulldozer” core. Future AMD processors will add support

for FMA3 instructions (see FMA3/FMA4 below).

Multiply Accumulate

Multiply-accumulate operations are calculations of the form

d = a + (b * c)

For example the dot product of vectors odd = [1, 3, 5] and even = [2, 4, 6] is calculated as

odd∙even =1*2 + 3*4 + 5*6 = 44

This would traditionally be computed in five steps

 X = 1 * 2
 Y = 3 * 4

Z = 5 * 6

 X = X + Y
 X = X + Z

Multiply accumulate instructions condense the execution to three steps

X = 0 + (1 * 2)
X = X + (3 * 4)

X = X + (5 * 6)

Multiply Accumulate vs. Fused Multiply Accumulate

In addition to reducing the number of operations, FMA instructions can also help improve precision. In the

first execution stream above, the hardware floating point unit would perform rounding on each computation

individually.

In a fused multiply accumulate instruction; the result is rounded only after completion of both the

multiplication and addition. FMA operations on AMD hardware are accurate within ½ bit in the least

significant bit.

Fused Multiply Accumulate

Advanced Micro Devices, Inc. New “Bulldozer” and “Piledriver” Instructions 4

FMA3/ FMA4

FMA3 and FMA4 differ only in their usage of memory registers. In the multiply-accumulate operation

d = a + (b * c)

FMA3 requires that the target d be either a, b, or c. FMA4 allows the target to be a fourth register.

Usage

Support for FMA4 is indicated by the value in bit 16 in ECX when calling CPUID function 0x8000_0001.

Code Example – Dot Product

The code below calculates the dot product of odd = [1, 3, 5] and even = [2, 4, 6] as shown in the example

above. It calls the _mm_macc_ss intrinsic which takes three arguments [src1, src2, src3] and returns src3 +

(src1 * src2). It is a scalar operation, processing only the lowest order 32-bit value in the 128-bit register.

#include <iostream>
#include <intrin.h>

int main(){
 __m128 odd [3]; // Odd values

 odd[0].m128_f32[0] = 1; // Store data in the low words

 odd[1].m128_f32[0] = 3; // for scalar calculation

 odd[2].m128_f32[0] = 5;

 __m128 even[3]; // Even values

 even[0].m128_f32[0] = 2; // Store data in the low words
 even[1].m128_f32[0] = 4; // for scalar calculation

 even[2].m128_f32[0] = 6;

 __m128 result = _mm_setzero_ps();

 result = _mm_macc_ss(odd[0], even[0], result);

 result = _mm_macc_ss(odd[1], even[1], result);

 result = _mm_macc_ss(odd[2], even[2], result);

 std::cout << "Result: " << result.m128_f32[0] << std::endl;

 return 0;

}

Advanced Micro Devices, Inc. New “Bulldozer” and “Piledriver” Instructions 5

FMA4 Instructions

The family of FMA4 intrinsic functions is provided below. The first table contains functions which operate on

128-bit XMM registers.

128-bit operations Vector Scalar

Double Single Double Single

Multiply Add _mm_macc_pd _mm_macc_ps _mm_macc_sd _mm_macc_ss

Multiply Add Subtract _mm_maddsub_pd _mm_maddsub_ps

Multiply Subtract _mm_msub_pd _mm_msub_ps _mm_msub_sd _mm_msub_ss

Multiply Subtract Add _mm_msubadd_pd _mm_msubadd_ps

Negative Multiply Add _mm_nmacc_pd _mm_nmacc_ps _mm_nmacc_sd _mm_nmacc_ss

Negative Multiply Subtract _mm_nmsub_pd _mm_nmsub_ps _mm_nmsub_sd _mm_nmsub_ss

The second table lists functions which operate on 256-bit YMM registers.

256-bit Operations Vector

Double Single

Multiply Add _mm256_macc_pd _mm256_macc_ps

Multiply Add Subtract _mm256_maddsub_pd _mm256_maddsub_ps

Multiply Subtract _mm256_msub_pd _mm256_msub_ps

Multiply Subtract Add _mm256_msubadd_pd _mm256_msubadd_ps

Negative Multiply Add _mm256_nmacc_pd _mm256_nmacc_ps

Negative Multiply Subtract _mm256_nmsub_pd _mm256_nmsub_ps

Advanced Micro Devices, Inc. New “Bulldozer” and “Piledriver” Instructions 6

The XOP instructions are valuable operations that were not included in the AVX specification. They can be

organized into four groups

1. Integer vector operations

• compare

• horizontal addition and subtraction

• multiply accumulate and multiply add accumulate

• shift and rotate

2. Vector byte permutation

3. Vector conditional move

4. Floating point fraction extraction

Usage

Support for XOP instructions is indicated by the value in bit 11 in ECX when calling CPUID function

0x8000_0001.

1. Integer Vector Operations

Compare

The compare XOP operations return a calculated value based on the comparison of two source registers. The

comparison operation (less than, greater than, etc.) is selected by a third parameter. See the AMD64

Architecture Programmer’s Manual for more information.

Input & Output Width

8 16 32 64

Compare (Signed) _mm_com_epi8 _mm_com_epi16 _mm_com_epi32 _mm_com_epi64

Compare (Unsigned) _mm_com_epu8 _mm_com_epu16 _mm_com_epu32 _mm_com_epu64

Horizontal Addition and Subtract

XOP Horizontal Addition operations perform addition across the values in a single 128-bit packed integer

register. The number of added values depends on the specific instruction. The example below describes the

operation of the xop intrinsic _mm_haddq_epi8 with the sixteen 8-bit input values on top, and two 64-bit

outputs on bottom.

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15

A0 + A1 + A2 + A3 + A4 + A5 + A6 + A7 A8 + A9 + A10 + A11 + A12 + A13 + A14 + A15

XOP

Advanced Micro Devices, Inc. New “Bulldozer” and “Piledriver” Instructions 7

The horizontal add XOP operations are given in the table below

 Output

Width

Input Width

8 16 32

Horizontal Add (Signed) 16 _mm_haddw_epi8

32 _mm_haddd_epi8 _mm_haddd_epi16

64 _mm_haddq_epi8 _mm_haddq_epi16 _mm_haddq_epi32

Horizontal Add (Unsigned) 16 _mm_haddw_epu8

32 _mm_haddd_epu8 _mm_haddd_epu16

64 _mm_haddq_epu8 _mm_haddq_epu16 _mm_haddq_epu32

Horizontal Subtract (Signed) 16 _mm_hsubw_epi8

32 _mm_hsubd_epi16

64 _mm_hsubq_epi32

Multiply (Add) Accumulate

The Integer Multiply Accumulate performs a Multiply Accumulate operation as described in the FMA

documentation above. No rounding is performed on the integer data.

Saturation

The saturating versions of the instructions perform an additional saturating step. If the value of the resulting

calculation is greater than the maximum or less than the minimum possible integer value, the result is set to

the min or max value respectively. On the non-saturating versions, the overflow is ignored.

Accumulate Hi / Lo

Some versions of the function take only the odd (hi) or even (lo) indexed words as input.

 Output

Width

Input Width

16 32

Multiply Accumulate 16 _mm_macc_epi16

32 _mm_maccd_epi16 _mm_macc_epi32

Multiply Accumulate Hi 64 _mm_macchi_epi32

Multiply Accumulate Lo 64 _mm_macclo_epi32

Saturating Integer Multiply Add 16 _mm_maccs_epi16

32 _mm_maccsd_epi16 _mm_maccs_epi32

Saturating Integer Multiply Add Hi 64 _mm_maccshi_epi32

Saturating Integer Multiply Add Lo 64 _mm_maccslo_epi32

Multiply Add Accumulate

XOP Multiply Add Accumulate operations perform multiply add accumulate calculations on inputs from three

source registers. The example below describes the operation of the xop intrinsic _mm_maddd_epi16 with

the three input registers on top and the output register on bottom.

Advanced Micro Devices, Inc. New “Bulldozer” and “Piledriver” Instructions 8

A0 A1 A2 A3 A4 A5 A6 A7

B0 B1 B2 B3 B4 B5 B6 B7

C0 C1 C2 C3

A0*B0 + A1*B1 + C0 A2*B2 + A3*B3 + C1 A4*B4 + A5*B5 + C2 A6*B6 + A7*B7 + C3

The multiply add accumulate XOP operations are given in the table below

Output

Width

Input Width

16, 32

Multiply Add Accumulate 32 _mm_maddd_epi16

Saturating Multiply Add Accumulate 32 _mm_maddsd_epi16

Shift and Rotate

The shift XOP operations perform bit shifts similar to the SSE2 shift operations, but allow the user to specify a

different shift count for each data field rather than a single immediate. If the shift count is positive, the data

shifts to the left. If the count is negative, the data shifts to the right.

The rotate XOP instructions behave similarly to the shift above, but as bits are shifted off one end of a data

field they are appended to the other.

Arithmetic vs. Logical Shift

Arithmetic shift operations preserve the sign of integer numbers when shifting. Logical shift operations

reposition the bits without regard to sign.

Rotate by Immediate

In the rotate XOP functions, each of the packed values in the first source register is shifted by the count

packed in the second source register. In the rotate by immediate version, all the packed values are rotated by

the same count passed in the second immediate parameter.

Input and Output Width

8 16 32 64

Arithmetic Shift _mm_sha_epi8 _mm_sha_epi16 _mm_sha_epi32 _mm_sha_epi64

Logical Shift _mm_shl_epi8 _mm_shl_epi16 _mm_shl_epi32 _mm_shl_epi64

Rotate _mm_rot_epi8 _mm_rot_epi16 _mm_rot_epi32 _mm_rot_epi64

Rotate by Immediate _mm_roti_epi8 _mm_roti_epi16 _mm_roti_epi32 _mm_roti_epi64

Advanced Micro Devices, Inc. New “Bulldozer” and “Piledriver” Instructions 9

2. Vector Byte Permutation

These operations perform selective permutation between two source packed registers. They use additional

parameters to specify complex transformations on the input data. See the function documentation for more

information.

Permute

The resulting packed integer register contains data selected from the two source registers and transformed

as controlled by the selector parameter.

Permute2

The resulting packed register contains either zero or the corresponding value from either of the sources as

controlled by the passed selector and control data.

 Input and Output Width

8 32 64

Permute Byte _mm_perm_epi8

Permute2 (Floating Point, 128) _mm_permute2_ps _mm_permute2_pd

Permute2 (Floating Point, 256) _mm256_permute2_ps _mm256_permute2_pd

3. Vector Conditional Move

This operation performs a bitwise select between two 128-bit inputs. The selection is specified in a third 128-

bit register.

Input & Output Width

128 256

Floating Point Extraction (Vector) _mm_cmov_si128 _mm256_cmov_si256

4. Floating point fraction extraction

These operations extract the fraction portion (part to the right of the decimal) of the packed vector or scalar

value.

Input & Output Width

32 64

Floating Point Extraction (Vector, 128) _mm_frcz_ps _mm_frcz_pd

Floating Point Extraction (Vector 256) _mm256_frcz_ps _mm256_frcz_pd

Floating Point Extraction (Scalar) _mm_frcz_ss _mm_frcz_sd

Advanced Micro Devices, Inc. New “Bulldozer” and “Piledriver” Instructions 10

Most scientific calculations are performed using 32 and 64-bit floating point data. When high precision and

large data range are desired, 64-bit double precision data is generally preferred over 32-bit single precision.

In applications such as image processing however, application developers sometimes trade the range and

accuracy of larger data formats for the increased speed of processing 16-bit data.

AMD “Piledriver” core processors include support for new instructions which accelerate the conversion

between 16 and 32-bit floating point values. These instructions provide performance advantages over the

bit-manipulation traditionally required to perform these conversions.

Floating Point

Unlike simple integer formats, floating point makes use of sub divided data fields and complex rules to derive

values from data. When working with floating point data, the data is divided into three distinct parts: sign bit,

exponent and fraction. The fraction part is also called the mantissa or significand.

The table below gives the size of the bit fields as well as the exponent bias associated with each format. For

more detailed information refer to the IEEE 754 standard which defines the various formats.

 Sign Bits Exponent Bits Fraction Bits Exponent Bias

16-bit (half precision) 1 5 10 15

32-bit (single precision) 1 8 23 127

64-bit (double precision) 1 11 52 1023

Floating point values are calculated using the formula

Value = -1
sign

 * 1.fraction2 * 2
(exponent – bias)

F16C / CVT16

Advanced Micro Devices, Inc. New “Bulldozer” and “Piledriver” Instructions 11

The example below shows the decimal conversion of the 16-bit float [1110010011010010].

Sign Exponent Fraction

1 [negative] 11001 [25] 0011010010

The value is separated into its component parts above. Calculation of the resulting value follows. Note that

multiplying by 2
10

 in the third step below is equivalent to shifting the decimal 10 places to the right.

[negative] 1.0011010010 * 2
(25 – 15)

[negative] 1.0011010010 * 2
10

[negative] 10011010010

[negative] 1234

Usage

Support for F16C instructions is indicated by the value in bit 29 in ECX when calling the CPUID function

0x0000_0001.

F16C

Two new F16C instructions are supported by the “Piledriver” core processor

Output

Width

Input Width

16 32

Floating Point Convert (Vector 128)
16 _mm_cvtps_ph

32 _mm_cvtph_ps

Floating Point Convert (Vector 256)
16 _mm256_cvtps_ph

32 _mm256_cvtph_ps

The figure below shows the input and output packed 128-bit register when calling _mm_cvtps_ph. The top

register contains four 32-bit values as input. The bottom register shows the resulting four 16-bit values

packed in the lower 64-bits

A32 B32 C32 D32

 A16 B16 C16 D16

A passed immediate controls the rounding mode (round up, truncate, etc). See the documentation of the

VCVTPH2PS and VCVTPS2PH instruction for more information.

Advanced Micro Devices, Inc. New “Bulldozer” and “Piledriver” Instructions 12

BMI and TBM are optimized version of common bit manipulation instructions. Unlike the previous

instructions that operate on 128 and 256-bit XMM and YMM registers, these instructions operate on general

purpose registers.

For more information about an instruction, see the AMD64 Architecture Programmer’s Manual Volume 3:

General-Purpose and System Instructions.

BMI

Support for BMI instructions is indicated by bit 3 in EBX when calling the CPUID function 0x0000_0007.

Instruction Description

ANDN Logical And-Not

BEXTR (reg) Bit Field Extract

BLSI Isolate Lowest Set Bit

BLSMSK Mask From Lowest Set Bit

BLSR Reset Lowest Set Bit

TZCNT Count Trailing Zeros

TBM

Support for TBM instructions is indicated by bit 21 in ECX when calling the CPUID function 0x8000_0001.

Instruction Description

BEXTR (imm) Bit Field Extract

BLCFILL Fill From Lowest Clear Bit

BLCI Isolate Lowest Clear Bit

BLCIC Isolate Lowest Clear Bit and Complement

BLCMSK Mask From Lowest Clear Bit

BLCS Set Lowest Clear Bit

BLSFILL Fill From Lowest Set Bit

BLSIC Isolate Lowest Set Bit and Complement

T1MSKC Inverse Mask from Trailing Ones

TZMSK Mask From Trailing Zeros

BMI and TBM

Advanced Micro Devices, Inc. New “Bulldozer” and “Piledriver” Instructions 13

AMD64 Architecture Programmer’s Manual Volume 3: General-Purpose and System Instructions

http://support.amd.com/us/Processor_TechDocs/24594_APM_v3.pdf

AMD64 Architecture Programmer’s Manual Volume 6: 128-Bit and 256-Bit XOP and FMA4 Instructions

http://support.amd.com/us/Embedded_TechDocs/43479.pdf

AMD CPUID Specification

http://support.amd.com/us/Embedded_TechDocs/25481.pdf

XOP Intrinsics

http://msdn.microsoft.com/en-us/library/gg466493(v=vs.100).aspx

Software Optimization Guide for AMD Family 15h Processors

http://support.amd.com/us/Processor_TechDocs/47414_15h_sw_opt_guide.pdf

References

Advanced Micro Devices, Inc. New “Bulldozer” and “Piledriver” Instructions 14

The information presented in this document is for informational purposes only and may contain technical

inaccuracies, omissions and typographical errors.

The information contained herein is subject to change and may be rendered inaccurate for many reasons,

including but not limited to product and roadmap changes, component and motherboard version changes, new

model and/or product releases, product differences between differing manufacturers, software changes, BIOS

flashes, firmware upgrades, or the like. There is no obligation to update or otherwise correct or revise this

information. However, we reserve the right to revise this information and to make changes from time to time to

the content hereof without obligation to notify any person of such revisions or changes.

NO REPRESENTATIONS OR WARRANTIES ARE MADE WITH RESPECT TO THE CONTENTS HEREOF AND NO

RESPONSIBILITY IS ASSUMED FOR ANY INACCURACIES, ERRORS OR OMISSIONS THAT MAY APPEAR IN THIS

INFORMATION.

ALL IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE ARE EXPRESSLY

DISCLAIMED. IN NO EVENT WILL ANY LIABILITY TO ANY PERSON BE INCURRED FOR ANY DIRECT, INDIRECT,

SPECIAL OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED

HEREIN, EVEN IF EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

© 2012 Advanced Micro Devices, Inc.

AMD, the AMD arrow logo, AMD Opteron and combinations thereof are trademarks of Advanced Micro Devices,

Inc. All other names used in this presentation are for informational purposes only and may be trademarks of

their respective owners.

Microsoft, Windows, Visual Studio, Visual Studio Express Edition are trademarks of Microsoft Corporation in the

United States, other countries, or both.

