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Chapter 1 Introduction

This guide provides optimization information and recommendations for AMD Family 15h 
processors. These optimizations are designed to yield software code that is fast, compact, and 
efficient. Toward this end, the optimizations in each of the following chapters are listed in order of 
importance.

This chapter covers the following topics:

1.1 Intended Audience
This book is intended for compiler and assembler designers, as well as C, C++, and assembly-
language programmers writing performance-sensitive code sequences. This guide assumes that you 
are familiar with the AMD64 instruction set and the AMD64 architecture (registers and programming 
modes). For complete information on the AMD64 architecture and instruction set, see the 
multivolume AMD64 Architecture Programmer’s Manual available from AMD.com. Individual 
volumes and their order numbers are provided below.

1.2 Getting Started
More experienced readers may skip to “Key Optimizations” on page 22, which identifies the most 
important optimizations, and to “What’s New on AMD Family 15h Processors” on page 22 for a 
quick review of key new performance enhancement features introduced with AMD Family 15h 
processors.

Topic Page
Intended Audience 17
Getting Started 17
Using This Guide 18
Important New Terms 20
Key Optimizations 22
What’s New on AMD Family 15h Processors 22

Title Order Number

Volume 1: Application Programming 24592

Volume 2: System Programming 24593

Volume 3: General-Purpose and System Instructions 24594

Volume 4: 128-Bit and 256-Bit Media Instructions 26568

Volume 5: 64-Bit Media and x87 Floating-Point Instructions 26569
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1.3 Using This Guide
Each of the remaining chapters in this document focuses on a particular general area of relevance to 
software optimization on AMD Family15h processors. Each chapter is organized into a set of one or 
more recommended related optimizations pertaining to a particular issue. These issues are divided 
into three sections:

• Optimization—Specifies the recommended action required for achieving the optimization under 
consideration.

• Application—Specifies the type of software for which the particular optimization is relevant (i.e., 
to 32-bit software or 64-bit software or to both).

• Rationale—Provides additional explanatory technical information regarding the particular 
optimization. This section usually provides illustrative C, C++, or assembly code examples as 
well.

The chapters that follow cover the following topics:

• Chapter 2, “Microarchitecture of AMD Family 15h Processors,” discusses the internal design, or 
microarchitecture, of the AMD Family 15h processor and provides information about translation-
lookaside buffers and other functional units that, while not part of the main processor, are 
integrated on the chip.

• Chapter 3, “C and C++ Source-Level Optimizations,” describes techniques that you can use to 
optimize your C and C++ source code.

• Chapter 4, “General 64-Bit Optimizations,” presents general assembly-language optimizations 
that can improve the performance of software designed to run in 64-bit mode. The optimizations 
in this chapter apply only to 64-bit software.

• Chapter 5 “Instruction-Decoding Optimizations,” discusses optimizations designed to maximize 
the number of instructions that the processor can decode at one time.

• Chapter 6 “Cache and Memory Optimizations,” discusses how to take advantage of the large L1 
caches and high-bandwidth buses.

• Chapter 7, “Branch Optimizations,” discusses improving branch prediction and minimizing 
branch penalties.

• Chapter 8, “Scheduling Optimizations.” discusses improving instruction scheduling in the 
processor.

• Chapter 9, “Integer Optimizations,” discusses integer performance.

• Chapter 10, “Optimizing with SIMD Instructions,” discusses the 64-bit and 128-bit SIMD 
instructions used to encode floating-point and integer operations.

• Chapter 11, “Multiprocessor Considerations,” discusses processor/core selection and related 
issues for applications running on multiprocessor/multicore cache coherent non-uniform memory 
access (ccNUMA) configurations.
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• Chapter 12, “Optimizing Secure Systems,” discusses ways to minimize the performance overhead 
imposed by the virtualization of a guest.

• Appendix A, “Implementation of Write-Combining,” describes how AMD Family 15h processors 
perform memory write-combining.

• Appendix B, “Instruction Latencies,” provides a complete listing of all AMD64 instructions with 
each instruction’s decode type, execution latency, and—where applicable—the pipes and 
throughput used in the floating-point unit.

• Appendix C, “Tools and APIs for AMD Family 15h ccNUMA Multiprocessor Systems” provides 
information on tools for programming in NUMA environments.

• Appendix D, “NUMA Optimizations for I/O Devices” provides information on the association of 
particular I/O devices with a specific nodes in a NUMA system.

• Appendix E, “Remarks on the RDTSC(P) Instruction” provides information on using the RDTSC 
and RDTSCP instructions to load the value of the time stamp counter (TSC).

1.3.1 Special Information
Special information in this guide is marked as follows:

This symbol appears next to the most important, or key, optimizations.

1.3.2 Numbering Systems
The following suffixes identify different numbering systems:

This suffix Identifies a
b Binary number. For example, the binary equivalent of the number 5 is written 101b.
d Decimal number. Decimal numbers are followed by this suffix only when the possibility of 

confusion exists. In general, decimal numbers are shown without a suffix.
h Hexadecimal number. For example, the hexadecimal equivalent of the number 60 is 

written 3Ch.
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1.3.3 Typographic Notation
This guide uses the following typographic notations for certain types of information:

1.4 Important New Terms
This section defines several important terms and concepts used in this guide.

1.4.1 Multi-Core Processors 
AMD Family 15h processors have multiple compute units, each containing its own L2 cache and two 
cores. The cores share their compute unit’s L2 cache. Each core incorporates the complete x86 
instruction set logic and L1 data cache. Compute units share the processor’s L3 cache and 
Northbridge (see Chapter 2, Microarchitecture of AMD Family 15h Processors).

1.4.2 Internal Instruction Formats
AMD Family 15h processors perform four types of primitive operations:

• Integer (arithmetic or logic)

• Floating-point (arithmetic)

• Load

• Store

The AMD64 instruction set is complex. Instructions have variable-length encoding and many 
perform multiple primitive operations. AMD Family 15h processors do not execute these complex 
instructions directly, but, instead, decode them internally into simpler fixed-length instructions called 
macro-ops. Processor schedulers subsequently break down macro-ops into sequences of even simpler 
instructions called micro-ops, each of which specifies a single primitive operation.

A macro-op is a fixed-length instruction that:

• Expresses, at most, one integer or floating-point operation and one load and/or store operation.

• Is the primary unit of work managed (that is, dispatched and retired) by the processor.

A micro-op is a fixed-length instruction that:

• Expresses one and only one of the primitive operations that the processor can perform (for 
example, a load).

• Is executed by the processor’s execution units.

This type of text Identifies

italic Placeholders that represent information you must provide. Italicized text is also used 
for the titles of publications and for emphasis.

monowidth Program statements and function names.
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Table 1 on page 21 summarizes the differences between AMD64 instructions, macro-ops, and micro-
ops.

1.4.3 Types of Instructions
Instructions are classified according to how they are decoded by the processor. There are three types 
of instructions:

Table 1. Instructions, Macro-ops and Micro-ops
Comparing AMD64 instructions Macro-ops Micro-ops
Complexity Complex

A single instruction may 
specify one or more of 
each of the following 
operations:
• Integer or floating-point
• Load
• Store

Average
A single macro-op may 
specify—at most—one 
integer or floating-point 
operation and one of the 
following operations:
• Load
• Store
• Load and store to the 

same address

Simple
A single micro-op 
specifies only one of the 
following primitive 
operations:
• Integer or floating-point
• Load
• Store

Encoded length Variable (instructions are 
different lengths)

Fixed (all macro-ops are 
the same length)

Fixed (all micro-ops are 
the same length)

Regularized instruction 
fields

No (field locations and 
definitions vary among 
instructions)

Yes (field locations and 
definitions are the same 
for all macro-ops)

Yes (field locations and 
definitions are the same 
for all micro-ops)

Instruction Type Description
FastPath Single Decodes directly into one macro-op in microprocessor hardware.
FastPath Double Decodes directly into two macro-ops in microprocessor hardware.
Microcode Decodes into one or more (usually three or more) macro-ops using the on-chip 

microcode-engine ROM (MROM).



22 Introduction Chapter 1

47414 Rev. 3.06 January 2012Software Optimization Guide for AMD Family 15h Processors

1.5 Key Optimizations
While all of the optimizations in this guide help improve software performance, some of them have 
more impact than others. Optimizations that offer the most improvement are called key optimizations.

This symbol appears next to the most important (key) optimizations.

1.5.1 Implementation Guideline
Concentrate your efforts on implementing key optimizations before moving on to other 
optimizations.

Table 2 lists the key optimizations. These optimizations are discussed in detail in later sections of this 
book.

1.6 What’s New on AMD Family 15h Processors
AMD Family 15h processors introduce several new features that can significantly enhance software 
performance when compared to the previous AMD64 microprocessors. The following section 
provides a summary of these performance improvements. Throughout this discussion, it is assumed 
that readers are familiar with the software optimization guide for the previous AMD64 processors and 
the terminology used there.

Table 2. Optimizations by Rank
Rank Optimization
1 Load-Execute Instructions for Floating-Point or Integer Operands (See 

section 5.1 on page 79.)
2 Write-Combining (See section 6.6 on page 111.)
3 Branches That Depend on Random Data (See section 7.3 on page 121.)
4 Loop Unrolling (See section 8.2 on page 129.)
5 Pointer Arithmetic in Loops (See section 8.5 on page 136.)
6 Explicit Load Instructions (See section 10.2 on page 168.)
7 Reuse of Dead Registers (See section 10.14 on page 184.)
8 ccNUMA Optimizations (See section 11.1 on page 193.)
9 Multithreading (See section 11.3 on page 204.)
10 Prefetch and Streaming Instructions (See section 6.5 on page 103.)
11 Memory and String Routines (See section 6.8 on page 113.)
12 Floating-Point Scalar Conversions (See sections 10.15 on page 185.)
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1.6.1 AMD Instruction Set Enhancements
The AMD Family 15h processor has been enhanced with the following new instructions:

• XOP and AVX support—Extended Advanced Vector Extensions provide enhanced instruction 
encodings and non-destructive operands with an extended set of 128-bit (XMM) and 256-bit 
(YMM) media registers

• FMA instructions—support for floating-point fused multiply accumulate instructions

• Fractional extract instructions—extract the fractional portion of vector and scalar single-precision 
and double-precision floating-point operands

• Support for new vector conditional move instructions.

• VPERMILx instructions—allow selective permutation of packed double- and single-precision 
floating point operands

• VPHADDx/VPHSUBx—support for packed horizontal add and substract instructions

• Support for packed multiply, add and accumulate instructions

• Support for new vector shift and rotate instructions

Support for these instructions is implementation dependent. See the CPUID Specification, order# 
25481, and the AMD64 Architecture Programmer’s Manual Documentation Updates for AMD Family 
15h Processors, order# 45988. for additional information.

1.6.2 Floating-Point Improvements 
AMD Family 15h processors provide additional support for 128-bit floating-point execution units. As 
a result, the throughput of both single-precision and double-precision floating-point SIMD vector 
operations has improved by 2X over the previous generation of AMD processors.

Users may notice differences in the results of programs when using the fused multiply and add 
FMAC. These differences do not imply that the new results are less accurate than using the ADD and 
MUL instructions separately. These differences result from the combination of an ADD and a MUL 
into a single instruction. As separate instructions, ADD and MUL provide a result which is accurate 
to ½ a bit in the least significant bit for the precision provided. However, the combined result of the 
ADD and the MUL is not accurate to ½ a bit.  

By fusing these two instructions into a “single” instruction, a fused multiply accumulate (FMAC), an 
accurate result is provided that is within ½ a bit in the in least significant bit.  Thus the difference 
between performing “separate” ADDs and MULs and doing a “single” FMAC is the cause of 
differences in the least significant bit of program results.

Performance Guidelines for Vectorized Floating-Point SIMD Code

While 128-bit floating-point execution units imply better performance for vectorized floating-point 
SIMD code, it is necessary to adhere to several performance guidelines to realize their full potential:
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• Avoid writing less than 128 bits of an XMM register when using certain initializing and non-
initializing operations.
A floating-point XMM register is viewed as one 128-bit register internally by the processor. 
Writing to a 64-bit half of a 128-bit XMM register results in a merge dependency on the other 64-
bit half. Therefore the following replacements are advised on AMD Family 15h processors:

– Replace MOVLPx/MOVHPx reg, mem pairs with MOVUPx reg, mem, irrespective of the 
alignment of the data. On AMD Family 15h processors, the MOVUPx instruction is just as 
efficient as MOVAPx, which is designed for use with aligned data. Hence it is advised to use 
MOVUPx regardless of the alignment.

– Replace MOVLPD reg, mem with MOVSD reg, mem.
– Replace MOVSD reg, reg with MOVAPD reg, reg.
However, there are also several instructions that initialize the lower 64 or 32 bits of an XMM 
register and zero out the upper 64 or 96 bits and, thus, do not suffer from such merge 
dependencies. Consider, for example, the following instructions:

MOVSD xmm, [mem64]
MOVSS xmm, [mem32]

When writing to a register during the course of a non-initializing operation on the register, there is 
usually no additional performance loss due to partial register reads and writes. This is because in 
the typical case, the partial register that is being written is also a source to the operation. For 
example, addsd xmm1, xmm2 does not suffer from merge dependencies.
There are often cases of non-initializing operations on a register, in which the partial register 
being written by the operation is not a source for the operation. In these cases also, it is preferable 
to avoid partial register writes. If it is not possible to avoid writing to a part of that register, then 
you should schedule any prior operation on any part of that register well ahead of the point where 
the partial write occurs.
Examples of non-initializing instructions that result in merge dependencies are SQRTSD, 
CVTPI2PS, CVTSI2SD, CVTSS2SD, MOVLHPS, MOVHLPS, UNPCKLPD and 
PUNPCKLQDQ.
For additional details on this optimization see “Partial-Register Writes” on page 84, “Explicit 
Load Instructions” on page 168, “Unaligned and Aligned Data Access” on page 169, and “Reuse 
of Dead Registers” on page 184.

• Legacy SIMD instructions themselves always merge the upper YMM[255:128] bits.  
AMD family 15h processors keep track of two Zero bits: one for double-precision floating-point 
values ((ZD = (dest[127:64]==0)), and one for single-precision floating-point values (ZS = 
(dest(127:32]==0)).  ZS implies a ZD.  Most SIMD instructions merge destination bits [127:64] 
or [127:32] for scalar double and single respectively. Some operations force the output to 0 for 
these bits—that is, when we set the ZD/ZS bits.  We then propagate them through dependency 
chains, so that for a few key operations we can break the false dependency. (Most merging 
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operations have real dependencies on the lower bits, and any dependency on the upper bits are 
irrelevant).
In the past, the combination of MOVLPD/MOVHPD intructions was used instead of MOVAPD 
(or MOVUPD).  Without optimization, the MOVLPD/MOVHPD instruction pair would have a 
false dependency on a previous loop iteration, while the MOVAPD instruction would not.  By 
optimizing, we can convert those cases that we can detect and remove false dependencies 
resulting from the use of MOVLPD/MOVHPD.  In the long run, it is still better to avoid the issue 
and use the MOVAPD instruction in the first place, instead of MOVLPD/MOVHPD.

• In the event of a load following a previous store to a given address for aligned floating-point 
vector data, use 128-bit stores and 128-bit loads instead of MOVLPX/MOVHPX pairs for storing 
and loading the data. This allows store-to-load forwarding to occur. Using MOVLPX/MOVHPX 
pairs is still recommended for storing unaligned floating-point vector data. Additional details on 
these restrictions can be obtained in “Store-to-Load Forwarding Restrictions” on page 98.

• To make use of the doubled throughput of both single-precision and double-precision floating-
point SIMD vector operations, a compiler or an application developer can consider either 
increasing the unrolling factor of loops that include such vector operations and/or performing 
other code transformations to keep the floating-point pipeline fully utilized.

1.6.3 Load-Execute Instructions for Unaligned Data
Use load-execute instructions instead of discrete load and execute instructions when performing 
SIMD integer, SIMD floating-point and x87 computations on floating-point source operands. This is 
recommended regardless of the alignment of packed data on AMD Family 15h processors. (The use 
of load-execute instructions under these circumstances was only recommended for aligned packed 
data on the previous AMD64 processors.) This replacement is only possible if the misaligned 
exception mask (MM) is set. See the AMD CPUID Specification, order# 25481, and the AMD64 
Architecture Programmer’s Manual Documentation Updates for AMD Family 15h Processors, order# 
45988 for additional information on SIMD misaligned access support. This optimization can be 
especially useful in vectorized SIMD loops and may eliminate the need for loop peeling due to 
nonalignment. (See “Load-Execute Instructions for Floating-Point or Integer Operands” on page 79.)

1.6.4 Instruction Fetching Improvements
While previous AMD64 processors had a single 32-byte fetch window, AMD Family 15h processors 
have two 32-byte fetch windows, from which four μops can be selected. These fetch windows, when 
combined with the 128-bit floating-point execution unit, allow the processor to sustain a 
fetch/dispatch/retire sequence of four instructions per cycle. Most instructions decode to a single μop, 
but fastpath double instructions decode to two μops. ALU instructions can also issue four μops per 
cycle and microcoded instructions should be considered single issue. Thus, there is not necessarily a 
one-to-one correspondence between the decode size of assembler instructions and the capacity of the 
32-byte fetch window and the production of optimal assembler code requires considerable attention 
to the details of the underlying programming constraints.
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Assembly language programmers can now group more instructions together but must still concern 
themselves with the possibility that an instruction may span a 32-byte fetch window. In this regard, it 
is also advisable to align hot loops to 32 bytes instead of 16 bytes, especially in the case of loops for 
large SIMD instructions.  See Chapter 7, “Branch Optimizations” on page 119 for details.

1.6.5 Instruction Decode and Floating-Point Pipe Improvements
Several integer and floating-point instructions have improved latencies and decode types on 
AMD Family 15h processors. Furthermore, the FPU pipes utilized by several floating-point 
instructions have changed. These changes can influence instruction choice and scheduling for 
compilers and hand-written assembly code. A comprehensive listing of all AMD64 instructions with 
their decode types, decode type changes from previous families of AMD processors, and execution 
latencies and FPU pipe utilization data are available in Appendix B.

1.6.6 Notable Performance Improvements
Several enhancements to the AMD64 architecture have resulted in significant performance 
improvements in AMD Family 15h processors, including:

• Improved performance from four FPU pipelines

• Improved data transfer between floating-point registers and general purpose registers

• Improved floating-point register-to-register moves

These are discussed in the following paragraphs and elsewhere in this document.

Note: Generally, avoid fp mov instructions in AVX code as they are largely not needed.

Improved Performance from four FPU Pipelines

The floating-point logic in AMD Family 15h processors uses four separate execution positions 
referred to as pipes 0, 1, 2 and 3. The mapping of these pipes to floating-point units is illustrated in 
Table 8 on page 238. Two 128-bit fused multiply-accumulate units and two 128-bit integer units are 
provided. This improves the FPU bandwidth up to four times over the previous AMD64 processors. 
For details on the floating-point unit see “Floating-Point Unit” on page 37.

Data Transfer Between Floating-Point Registers and General Purpose Integer 
Registers

We recommend using the MOVD/MOVQ instruction when moving data from an MMX™ or XMM 
register to a GPR.

Floating-Point Register-to-Register Moves 

On current AMD processors, floating-point register-to-register moves can map to any of pipes 0.. 3 as 
register-register moves depending on the type of move. Memory forms of these types of instructions 
are generally microcode (see latency table in Appendix B for greater detail regarding pipe mapping).
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1.6.7 AMD Virtualization™ Optimizations
Chapter 12, “Optimizing Secure Virtual Machines” covers optimizations that minimize the 
performance overhead imposed by the virtualization of a guest in AMD Virtualization™ technology 
(AMD-V™). Topics include:

• The advantages of using nested paging instead of shadow paging

• Guest page attribute table (PAT) configuration

• State swapping

• Economizing Interceptions

• Nested page and shadow page size

• TLB control and flushing in shadow pages

• Instruction Fetch for Intercepted instructions

• Virtual interrupt VMCB field

• Sharing IOIO and MSR protection maps

• CPUID

• Paravirtualized resources
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Chapter 2 Microarchitecture of 
AMD Family 15h Processors

An understanding of the terms architecture, microarchitecture, and design implementation is 
important when discussing processor design.

The architecture consists of the instruction set and those features of a processor that are visible to 
software programs running on the processor. The architecture determines what software the processor 
can run. The AMD64 architecture of the AMD Family 15h processors is compatible with the 
industry-standard x86 instruction set.

The term microarchitecture refers to the design features used to reach the target cost, performance, 
and functionality goals of the processor. The AMD Family 15h processor employs a decoupled 
decode/execution design approach. In other words, decoders and execution units operate essentially 
independently; the execution core uses a small number of instructions and a simplified circuit design 
implementation to achieve fast single-cycle execution with fast operating frequencies.

The design implementation refers to a particular combination of physical logic and circuit elements 
that comprise a processor that meets the microarchitecture specifications.

This appendix covers the following topics:

Topic Page
Key Microarchitecture Features 30
Microarchitecture of AMD Family 15h Processors 30
Superscalar Processor 31
Processor Block Diagram 31
AMD Family 15h Processor Cache Operations 32
Branch-Prediction 34
Instruction Fetch and Decode 34
Integer Execution 35
Translation-Lookaside Buffer 35
Integer Unit 36
Floating-Point Unit 37
Load-Store Unit 38
Write Combining 39
Integrated Memory Controller 39
HyperTransport™ Technology Interface 40
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2.1 Key Microarchitecture Features
AMD Family 15h processors include many features designed to improve software performance. The 
internal design, or microarchitecture, of these processors provides the following key features:

• Up to 8 Compute Units (CUs) with 2 cores per CU

• Integrated DDR3 memory controller (two in some models) with memory prefetcher

• 64-Kbyte L1 instruction cache per CU

• 16-Kbyte L1 data cache per core

• Unified L2 cache shared between cores of CU

• Shared L3 cache on chip (for supported platforms) except for models 10h–1Fh

• 32-byte instruction fetch

• Instruction predecode and branch prediction during cache-line fills

• Decoupled prediction and instruction fetch pipelines

• Four-way instruction decoding (See section 2.3 on page 31.) 

• Dynamic scheduling and speculative execution

• Two-way integer execution

• Two-way address generation

• Two-way 128-bit wide floating-point and packed integer execution

• Legacy single-instruction multiple-data (SIMD) instruction extensions, as well as support for 
XOP, FMA4, VPERMILx, and Advanced Vector Extensions (AVX).

• Support for FMA, F16C, BMI and TBM instruction sets (models 10h–1fh and 20h–2fh)

• Superforwarding

• Prefetch into L2 or L1 data cache

• Increased L1 DTLB size to 64 (models 10h–1fh and 20h–2fh)

• Deep out-of-order integer and floating-point execution

• HyperTransport™ technology

• Support for 10 cores per node in some products (models 20h–2fh)

• Four DDR3 channels (models 20h–2fh)

2.2 Microarchitecture of AMD Family 15h Processors
AMD Family 15h processors implement the AMD64 instruction set by means of macro-ops (the 
primary units of work managed by the processor) and micro-ops (the primitive operations executed in 
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the processor's execution units).  These are simple fixed-length operations designed to include direct 
support for AMD64 instructions and adhere to the high-performance principles of fixed-length 
encoding, regularized instruction fields, and a large register set. This enhanced microarchitecture 
enables higher processor core performance and promotes straightforward extensibility for future 
designs.

2.3 Superscalar Processor
The AMD Family 15h processors are aggressive, out-of-order, four-way superscalar AMD64 
processors. They can theoretically fetch, decode, and issue up to four AMD64 instructions per cycle 
using decoupled fetch and branch prediction units and three independent instruction schedulers, 
consisting of two integer schedulers and one floating-point scheduler. 

These processors can fetch 32 bytes per cycle and can scan two 16-byte instruction windows for up to 
four micro-ops, which can be dispatched together in a single cycle. However, this is a theoretical 
limit. The actual number of micro-ops that are dispatched may be lower, depending on a number of 
factors, such as whether the processor is executing in fast or slow mode and whether instructions can 
be broken up into 16-byte windows. The processors move integer instructions through the replicated 
Integer clusters and floating point instructions through the shared floating point unit (FPU), as shown 
in Figure 1. on page 32. 

2.4 Processor Block Diagram
A block diagram of the AMD Family 15h processors is shown in Figure 1 on page 32.
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Figure 1. AMD Family 15h Processors Block Diagram

Note: The FP Scheduler supports 4 pipes, p0, p1, p2 and p3.

2.5 AMD Family 15h Processor Cache Operations
AMD Family 15h processors use four different caches to accelerate instruction execution and data 
processing:

• L1 instruction cache

• L1 data cache

• Shared compute unit L2 cache

• Shared on chip L3 cache (on supported platforms)
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2.5.1 L1 Instruction Cache
The out-of-order execution engine of AMD Family 15h processors contains a 64-Kbyte, 2-way set-
associative L1 instruction cache. Each line in this cache is 64 bytes long. However, only 32 bytes are 
fetched in every cycle. Functions associated with the L1 instruction cache are instruction loads, 
instruction prefetching, instruction predecoding, and branch prediction. Requests that miss in the L1 
instruction cache are fetched from the L2 cache or, subsequently, from the L3 cache or system 
memory.

On misses, the L1 instruction cache generates fill requests to a naturally aligned 64-byte line 
containing the instructions and the next sequential line of bytes (a prefetch). Because code typically 
exhibits spatial locality, prefetching is an effective technique for avoiding decode stalls. Cache-line 
replacement is based on a least-recently-used replacement algorithm.

Predecoding begins as the L1 instruction cache is filled. Predecode information is generated and 
stored alongside the instruction cache. This information is used to help efficiently identify the 
boundaries between variable length AMD64 instructions.

2.5.2 L1 Data Cache
The AMD Family 15h processor contains a 16-Kbyte, 4-way predicted L1 data cache with two 128-
bit ports. This is a write-through cache that supports up to two 128 Byte loads per cycle. It is divided 
into 16 banks, each 16 bytes wide. In addition, the L1 cache is protected from single bit errors through 
the use of parity. There is a hardware prefetcher that brings data into the L1 data cache to avoid 
misses. The L1 data cache has a 4-cycle load-to-use latency. Only one load can be performed from a 
given bank of the L1 cache in a single cycle.

2.5.3 L2 Cache
The AMD Family 15h processor has one shared L2 cache per compute unit. This full-speed on-die L2 
cache is mostly inclusive relative to the L1 cache. The L2 is a write-back cache. Every time a store is 
performed in a core, that address is written into both the L1 data cache of the core the store belongs to 
and the L2 cache (which is shared between the two cores). The L2 cache has a variable load to use 
latency starting at 20 cycles.

Size and associativity of the AMD Family 15h processor L2 cache is implementation dependent. See 
the appropriate BIOS and Kernel Developer’s Guide for details.

2.5.4 L3 Cache
The AMD Family 15h processor supports a maximum of 8MB of L3 cache per die, distributed among 
four L3 sub-caches which can each be up to 2MB in size. The L3 cache is considered a non-inclusive 
victim cache architecture optimized for multi-core AMD processors. Only L2 evictions cause 
allocations into the L3 cache. Requests that hit in the L3 cache can either leave the data in the L3 
cache—if it is likely the data is being accessed by multiple cores—or remove the data from the L3 
cache (and place it solely in the L1 cache, creating space for other L2 victim/copy-backs), if it is 
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likely the data is only being accessed by a single core. Furthermore, the L3 cache of the AMD Family 
15h processor also features a number of micro-architectural improvements that enable higher 
bandwidth.

Note that the L3 Cache does not apply to models 10h–1fh.

2.6 Branch-Prediction
To predict and accelerate branches, AMD Family 15h processors employ a combination of next-
address logic, a 2-level branch target buffer (BTB) for branch identification and direct target 
prediction, a return address stack used for predicting return addresses, an indirect target predictor for 
predicting indirect jump and call addresses, a hybrid branch predictor for predicting conditional 
branch directions, and a fetch window tracking structure (BSR). Predicted-taken branches incur a 1-
cycle bubble in the branch prediction pipeline when they are predicted by the L1 BTB, and a 4-cycle 
bubble in the case where they are predicted by the L2 BTB. The minimum branch misprediction 
penalty is  20 cycles in the case of conditional and indirect branches and 15 cycles for unconditional 
direct branches and returns.

The BTB is a tagged two-level set associative structure accessed using the fetch address of the current 
window. Each BTB entry includes information about a branch and its target.  The L1 BTB contains 
128 sets of 4 ways for a total of 512 entries, while the L2 BTB has 1024 sets of 5 ways for a total of 
5120 entries.

The hybrid branch predictor is used for predicting conditional branches. It consists of a global 
predictor, a local predictor and a selector that tracks whether each branch is correlating better with the 
global or local predictor. The selector and local predictor are indexed with a linear address hash. The 
global predictor is accessed via a 2-bit address hash and a 12-bit global history. 

AMD Family 15h processors implement a separate 512- entry indirect target array used to predict 
indirect branches with multiple dynamic targets.

In addition, the processors implement a 24-entry return address stack to predict return addresses from 
a near or far call. Most of the time, as calls are fetched, the next return address is pushed onto the 
return stack and subsequent returns pop a predicted return address off the top of the stack. However, 
mispredictions sometimes arise during speculative execution. Mechanisms exist to restore the stack to 
a consistent state after these mispredictions.

2.7 Instruction Fetch and Decode
AMD Family 15h processors can theoretically fetch 32B of instructions per cycle and send these 
instructions to the Decode Unit (DE) in 16B windows through the 16-entry (per-thread) Instruction 
Byte Buffer (IBB). The Decode Unit can only scan two of these 16B windows in a given cycle for up 
to four instructions. If four instructions partially or wholly exist in more than two of these windows, 
only those instructions within the first and second windows will be decoded. Aligning to 16B 
boundaries is important to achieve full decode performance.
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2.8 Integer Execution
The integer execution unit for the AMD Family 15h processor consists of two components:

• the integer datapath

• the instruction scheduler and retirement control

These two components are responsible for all integer execution (including address generation) as well 
as coordination of all instruction retirement and exception handling. The instruction scheduler and 
retirement control tracks instruction progress from dispatch, issue, execution and eventual retirement. 

The scheduling for integer operations is fully data-dependency driven; proceeding out-of-order based 
on the validity of source operands and the availability of execution resources.

Since the Bulldozer core implements a floating point co-processor model of operation, most 
scheduling and execution decisions of floating-point operations are handled by the floating point unit. 
However, the scheduler does track the completion status of all outstanding operations and is the final 
arbiter for exception processing and recovery.

2.9 Translation-Lookaside Buffer
A translation-lookaside buffer (TLB) holds the most-recently-used page mapping information.  It 
assists and accelerates the translation of virtual addresses to physical addresses.

The AMD Family 15h processors utilize a two-level TLB structure.

2.9.1 L1 Instruction TLB Specifications
The AMD Family 15h processor contains a fully-associative L1 instruction TLB with 48 4-Kbyte 
page entries and 24 2-Mbyte or 1-Gbyte page entries. 4-Mbyte pages require two 2-Mbyte entries; 
thus, the number of entries available for 4-Mbyte pages is one half the number of 2-Mbyte page 
entries.

Models 10h–2fh have 64 entry data TLB and 15h has 32 entries.

2.9.2 L1 Data TLB Specifications
The AMD Family 15h processor contains a fully-associative L1 data TLB with 32 entries for 4-
Kbyte, 2-Mbyte, and 1-Gbyte pages. 4-Mbyte pages require two 2-Mbyte entries; thus, the number of 
entries available for 4-Mbyte pages is one half the number of 2-Mbyte page entries.

2.9.3 L2 Instruction TLB Specifications
The AMD Family 15 processor contains a 4-way set-associative L2 instruction TLB with 512 4-
Kbyte page entries.
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2.9.4 L2 Data TLB Specifications
The AMD Family 15h processor contains an L2 data TLB and page walk cache (PWC) with 1024 4-
Kbyte, 2-Mbyte or 1-Gbyte page entries (8-way set-associative). 4-Mbyte pages require two 2-Mbyte 
entries; thus, the number of entries available for 4-Mbyte pages is one half the number of 2-Mbyte 
page entries.

2.10 Integer Unit
The integer unit consists of two components, the integer scheduler, which feeds the integer execution 
pipes, and the integer execution unit, which carries out several types of operations discussed below. 
The integer unit is duplicated for each thread pair.

2.10.1 Integer Scheduler
The scheduler can receive and schedule up to four micro-ops (μops) in a dispatch group per cycle. 
The scheduler tracks operand availability and dependency information as part of its task of issuing 
μops to be executed. It also assures that older μops which have been waiting for operands are 
executed in a timely manner. The scheduler also manages register mapping and renaming.

2.10.2 Integer Execution Unit
There are four integer execution units per core. Two units which handle all arithmetic, logical and 
shift operations (EX). And two which handle address generation and simple ALU operations 
(AGLU). Figure 2 shows a block diagram for one integer cluster. There are two such integer clusters 
per compute unit.

Figure 2. Integer Execution Unit Block Diagram

Macro-ops are broken down into micro-ops in the schedulers. Micro-ops are executed when their 
operands are available, either from the register file or result buses. Micro-ops from a single operation 
can execute out-of-order. In addition, a particular integer pipe can execute two micro-ops from 
different macro-ops (one in the ALU and one in the AGLU) at the same time. (See Figure 1 on 
page 32.) The scheduler can receive up to four macro-ops  per cycle. This group of macro-ops is 
called a dispatch group.

Scheduler

EX0/DIV/POPCNT AGLU0 EX1/MUL/BRANCH AGLU1
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EX0 contains a variable latency non-pipelined integer divider. EX1 contains a pipelined integer 
multiplier. The AGLUs contain a simple ALU to execute arithmetic and logical operations and 
generate effective addresses. A load and store unit (LSU) reads and writes data to and from the L1 
data cache. The integer scheduler sends a completion status to the ICU when the outstanding micro-
ops for a given macro-op are executed. (For more information on the LSU, see section 2.12 on page 
38.)

L1 DTLB has been increased to 64M for AMD Family 15h Models 10h-1fh processors. For 
AMD Family 15h models 20h to 2fh processors, the L1 DTLB size has increased from 32 entries to 
64 entries.

2.11 Floating-Point Unit
The AMD Family 15h processor floating point unit (FPU) was designed to provide four times the raw 
FADD and FMUL bandwidth as the original AMD Opteron and Athlon 64 processors. It achieves this 
by means of two 128-bit fused multiply-accumulate (FMAC) units which are supported by a 128-bit 
high-bandwidth load-store system. The FPU is a coprocessor model that is shared between the two 
cores of one AMD Family 15h compute unit. As such it contains its own scheduler, register files and 
renamers and does not share them with the integer units. This decoupling provides optimal 
performance of both the integer units and the FPU. In addition to the two FMACs, the FPU also 
contains two 128-bit integer units which perform arithmetic and logical operations on AVX, MMX 
and SSE packed integer data.

A 128-bit integer multiply accumulate (IMAC) unit is incorporated into FPU pipe 0. The IMAC 
performs integer fused multiply and accumulate, and similar arithmetic operations on AVX, MMX 
and SSE data. A crossbar (XBAR) unit is integrated into FPU pipe 1 to execute the permute 
instruction along with shifts, packs/unpacks and shuffles. There is an FPU load-store unit which 
supports up to two 128-bit loads and one 128-bit store per cycle.

FPU Features Summary and Specifications:

• The FPU can receive up to four ops per cycle. These ops can only be from one thread, but the 
thread may change every cycle. Likewise the FPU is four wide, capable of issue, execution and 
completion of four ops each cycle. Once received by the FPU, ops from multiple threads can be 
executed.

• Within the FPU,  up to two loads per cycle can be accepted, possibly from different threads.

• There are four logical pipes: two FMAC and two packed integer. For example, two 128-bit 
FMAC and two 128-bit integer ALU ops can be issued and executed per cycle.

• Two 128-bit FMAC units. Each FMAC supports four single precision or two double-precision 
ops.

• FADDs and FMULs are implemented within the FMAC’s.

• x87 FADDs and FMULs are also handled by the FMAC.

• Each FMAC contains a variable latency divide/square root machine.
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• Only 1 256-bit operation can issue per cycle, however an extra cycle can be incurred as in the case 
of a FastPath Double if both micro ops cannot issue together.

• The FPU is shared between two clusters and threads. The physical registers internally are 128-bits 
in size, equal to an XMM or half a YMM (it takes two internal registers to represent a YMM 256-
bit register). To represent the Instruction Set Architected (ISA) registers it takes per 
cluster/thread:
32 registers ( YMM0 - YMM15), or 16 registers ( XMM0 - XMM15)
8 x87 registers

Figure 3 shows a block diagram of the dataflow through the FPU.

Figure 3. Floating-Point Unit

2.12 Load-Store Unit
The AMD family 15h processor load-store (LS) unit handles data accesses. There are two LS units 
per compute unit, or one per core. The LS unit supports two 128-bit loads/cycle and one 128-bit 
store/cycle. A 24-entry store queue buffers stored data until it can be written to the data cache. The 
load queue holds load operations until after the load has been completed and delivered to the integer 
unit or the FPU. For Models 00h-0Fh the load queue is 40 entries deep. For models 10h-2Fh the depth 
of the load queue is increased to 44 entries. The LS unit is composed of two largely independent pipe-
lines enabling the execution of two memory operations per cycle.

Finally, the LS unit helps ensure that the architectural load and store ordering rules are preserved (a 
requirement for AMD64 architecture compatibility).
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Figure 4. Load-Store Unit

2.13 Write Combining
AMD Family 15h processors provide four write-combining data buffers that allow four simultaneous 
streams. For details, see Appendix A, “Implementation of Write-Combining,” on page 231.

A Write Coalescing Cache (WCC) has been incorporated into the AMD family 15h 
microarchitecture. The WCC is 4 KB in size and is 4-way set associative. Stores to cacheable memory 
and, thus, to the L2 cache are coalesced in this cache.

2.14 Integrated Memory Controller
AMD Family 15h processors provide integrated low-latency, high-bandwidth DDR3 memory 
controllers.

The memory controller supports:

• DRAM chips that are 4, 8, and 16 bits wide within a DIMM.

• Interleaving memory within DIMMs.

LSU

Data
Cache
4-Way

16 Kbytes

Operand
Buses

Result Buses
from
Core

Store Data
to BIU



40 Microarchitecture of AMD Family 15h Processors Chapter 2

47414 Rev. 3.06 January 2012Software Optimization Guide for AMD Family 15h Processors

• ECC checking with single symbol correcting and double symbol detecting. (See the BIOS and 
Kernel Developer’s Guide for AMD Family 15h Processors, order# 42301.)

• Dual-independent 64-bit channel operation (models 00h-1fh).

• Quad-independent 64-bit channel operation (models 20h-2fh).

• Optimized scheduling algorithms and access pattern predictors to improve latency and achieved 
bandwidth, particularly for interleaved streams of read and write DRAM accesses. 

• A data prefetcher.

Prefetched data is held in the memory controller itself and is not speculatively filled into the L1, L2, 
or L3 caches. This prefetcher is able to capture both positive and negative stride values (both unit and 
non-unit) of cache-line size, as well as some more complicated access patterns.

The memory controller in models 00h–0fh has two channels to DDR3 memory. The memory 
controller in models 10h–1fh has two channels to DDR3 memory. The memory controller in models 
20h–2fh has four channels to DDR3 memory.

For specifications on a certain processor’s memory controller, see the data sheet for that processor. 
For information on how to program the memory controller, see the BIOS and Kernel Developer’s 
Guide for AMD Family 15h Processors, order# 42301.

2.15 HyperTransport™ Technology Interface
HyperTransport technology is a scalable, high-speed, low-latency, point-to-point, packetized link 
that:

• Enables high data transfer rates.

• Simplifies connectivity by replacing legacy buses and bridges.

• Reduces latencies and bottlenecks within systems.

When compared with traditional technologies, HyperTransport technology allows much faster data-
transfer rates. For more information on HyperTransport technology, see the HyperTransport I/O Link 
Specification, available at www.hypertransport.org.

On AMD Family 15h processors, HyperTransport technology provides the link to I/O devices. Some 
processor models—for example, those designed for use in multiprocessing systems—also utilize 
HyperTransport technology to connect to other processors. See the BIOS and Kernel Developer's 
Guide for your particular processor for details concerning HyperTransport technology 
implementation details.

In addition to supporting previous HyperTransport interfaces, AMD Family 15h processors support a 
newer version of the HyperTransport standard: HyperTransport3. HyperTransport3 increases the 
aggregate link bandwidth to a maximum of 25.6 Gbyte/s (16-bit link). HyperTransport3 also adds 
HyperTransport Retry which improves RAS by allowing detection and retransmission of packets 
corrupted in transit. 
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Additional features in the AMD Family 15h HyperTransport implementation may include: 

• HyperTransport link bandwidth balancing, allowing multiple HyperTransport links to be teamed 
to carry coherent traffic. 

• HyperTransport Link Splitting, which allowing a single 16-bit link to be split into two 8-bit links. 

These features allow for further optimized platform designs that are capable of increasing system 
bandwidth and reducing latency.

2.15.1 HyperTransport Assist
Following information does not apply to models 10h-1fh.

Multisocket-capable AMD family 15h processors incorporate HyperTransport assist technology (also 
referred to in some documents as probe filtering). HyperTransport assist functionality may or may not 
be enabled by default on a specific platform implementation. However, the BIOS can enable 
HyperTransport assist on these platforms, if it is not enabled by default.

HyperTransport assist reduces the effective latency of memory access in multi-node systems by 
changing the coherence protocol from a broadcast style to a directory style. In cases requiring many 
memory accesses, in particular to local memory—as is common in NUMA-optimized applications—
the probe and response latency required for maintaining coherence takes longer than the DRAM 
access. In these cases, HyperTransport assist can remove many of the probes and responses associated 
with DRAM access, thus decreasing effective latency to access system memory.

HyperTransport assist also increases the total coherent fabric bandwidth capability within the system 
by removing much probe and response traffic from the coherent HyperTransport links. It also 
streamlines probe and response handling throughout the L1/L2/L3 caches and elsewhere in the 
microarchitecture, which can lead to additional bandwidth improvements in systems with multiple 
processing nodes.

HyperTransport assist is enabled by partitioning the L3 cache physical storage into a section used as 
traditional (CPU-side) L3 cache, and a separate physical section for directory storage which is 
inaccessible to the CPUs.  In effect, from the perspective of CPUs, systems with HyperTransport 
assist enabled have a smaller L3 cache.  Typically, 1–2MB of L3 cache is reserved for use by 
HyperTransport assist technology. Thus, some amount of L3 capacity is traded for reduced latency on 
cache refills.  While the benefit of this tradeoff can be workload-dependant, it is almost universally a 
win on larger (4+ node) systems.  If a platform runs a specific workload, it may be worth evaluating 
performance with and without HyperTransport assist.

Enabling HyperTransport assist allows for performance benefits beyond the NUMA optimizations 
suggested in Appendix C, “Tools and APIs for AMD Family 15h ccNUMA 
Multiprocessor Systems,” on page 317.

For information on HyperTransport assist implementation details for a specific processor, see the 
BIOS and Kernel Developer’s Guide for AMD Family 15h Processors, order #42301 (where it goes 
by the alternate name of probe filter).
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Chapter 3 C and C++ Source-Level 
Optimizations

Although C and C++ compilers can often produce very efficient object code from naive source code, 
careful attention to coding details can lead to even better object code and therefore to improved 
performance. Many optimizations take advantage of the underlying mechanisms used by C and C++ 
compilers to translate source code into sequences of AMD64 instructions. This chapter includes 
guidelines for writing C and C++ source code that yields an approximation to the most highly 
efficient optimization.

This chapter covers the following topics:

Topic Page
Declarations of Floating-Point Values 44
Using Arrays and Pointers 45
Use of Function Prototypes 47
Unrolling Small Loops 47
Expression Order in Compound Branch Conditions 48
Arrange Boolean Operands for Quick Expression Evaluation 49
Long Logical Expressions in If Statements 50
Pointer Alignment 51
Unnecessary Store-to-Load Dependencies 52
Matching Store and Load Size 53
Use of const Type Qualifier 56
Generic Loop Hoisting 56
Local Static Functions 59
Explicit Parallelism in Code 59
Extracting Common Subexpressions 62
Sorting and Padding C and C++ Structures 63
Replacing Integer Division with Multiplication 64
Frequently Dereferenced Pointer Arguments 65
32-Bit Integral Data Types 66
Sign of Integer Operands 67
Improving Performance in Linux® Libraries 68
Improving Performance in Linux® Libraries 68
Aligning Matrices 69
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Additional Considerations
Source-code transformations interact with a compiler’s code generator, making it difficult to control 
the generated machine code from the source level. It is even possible that source-code 
transformations aimed at improving performance may conflict with compiler optimizations. 
Depending on the compiler and the specific source code, it is possible for pointer-style code to 
compile into machine code that is faster than that generated from equivalent array-style code. 
Compare the performance of your code after implementing a source-code transformation with the 
performance of the original code to be sure that there is an improvement.

Some compilers provide proprietary declaration keywords that further allow the compiler to reduce 
possible aliasing. See Compiler Usage Guidelines for 64-Bit Operating Systems on AMD64 Platforms 
Application Note, order# 32035, for details.

3.1 Declarations of Floating-Point Values

Optimization
When working with single precision (float) values:

• Use the f or F suffix (for example, 3.14f) to specify a constant value of type float.

• Use function prototypes for all functions that accept arguments of type float.

Application
This optimization applies to:

• 32-bit software

• 64-bit software

Rationale
C and C++ compilers treat floating-point constants and arguments as double precision (double) 
unless you specify otherwise. However, single precision floating-point values occupy half the 
memory space as double precision values and can often provide the precision necessary for a given 
computational problem.

This optimization also results in more efficient use of the XMM Streaming SIMD registers: four 
single precision values can be packed into a single XMM register, compared to two double precision 
values.
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3.2 Using Arrays and Pointers

Optimization
Use array notation instead of pointer notation when working with arrays.

Application
This optimization applies to:

• 32-bit software

• 64-bit software

Rationale
C allows the use of either the array operator ([]) or pointers to access the elements of an array. 
However, the use of pointers in C makes work difficult for optimizers in C compilers. Without 
detailed and aggressive pointer analysis, the compiler has to assume that writes through a pointer can 
write to any location in memory, including storage allocated to other variables. (For example, *p and 
*q can refer to the same memory location, while x[0] and x[2] cannot.) Pointers make it difficult for 
compilers to detect the presence or absence of aliasing—with possible ambiguous access to a block of 
memory. The compiler sometimes must assume aliasing in the presence of pointers, which limits the 
opportunities for optimization. Array notation makes the task of the optimizer easier by reducing 
possible aliasing.

Example
Avoid code, such as the following, which uses pointer notation:

typedef struct {
   float x, y, z, w;
} VERTEX;

typedef struct {
   float m[4][4];
} MATRIX;

void XForm(float *res, const float *v, const float *m, int numverts) {

   float dp;
   int i;
   const VERTEX* vv = (VERTEX *)v;

   for (i = 0; i < numverts; i++) {
      dp  = vv->x * *m++;
      dp += vv->y * *m++;
      dp += vv->z * *m++;
      dp += vv->w * *m++;
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      *res++ = dp;  // Write transformed x.
     

 dp  = vv->x * *m++;
      dp += vv->y * *m++;
      dp += vv->z * *m++;
      dp += vv->w * *m++;

      *res++ = dp;  // Write transformed y.

      dp  = vv->x * *m++;
      dp += vv->y * *m++;
      dp += vv->z * *m++;
      dp += vv->w * *m++;

      *res++ = dp;  // Write transformed z.

      dp  = vv->x * *m++;
      dp += vv->y * *m++;
      dp += vv->z * *m++;
      dp += vv->w * *m++;

      *res++ = dp;  // Write transformed w.

      ++vv;     // Next input vertex
      m -= 16;  // Reset to start of transform matrix.
   }
}

Instead, use the equivalent array notation:

typedef struct {
    float x, y, z, w;
} VERTEX;

typedef struct {
    float m[4][4];
} MATRIX;

void XForm(float *res, const float *v, const float *m, int numverts) {
    int i;
    const VERTEX* vv = (VERTEX *)v;
    const MATRIX* mm = (MATRIX *)m;
    VERTEX* rr = (VERTEX *)res;
    for (i = 0; i < numverts; i++) {
        rr[i].x = vv[i].x * mm->m[0][0] + vv[i].y * mm->m[0][1] +
            vv[i].z * mm->m[0][2] + vv[i].w * mm->m[0][3];
        rr[i].y = vv[i].x * mm->m[1][0] + vv[i].y * mm->m[1][1] +
            vv[i].z * mm->m[1][2] + vv[i].w * mm->m[1][3];
        rr[i].z = vv[i].x * mm->m[2][0] + vv[i].y * mm->m[2][1] +
            vv[i].z * mm->m[2][2] + vv[i].w * mm->m[2][3];
        rr[i].w = vv[i].x * mm->m[3][0] + vv[i].y * mm->m[3][1] +
            vv[i].z * mm->m[3][2] + vv[i].w * mm->m[3][3];
    }
}
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3.3 Use of Function Prototypes

Optimization
In general, use prototypes for all functions.

Application
This optimization applies to:

• 32-bit software

• 64-bit software

Rationale
Function prototypes can convey additional information to the compiler that might enable more 
aggressive optimizations and enable the compiler to catch potential runtime errors.

3.4 Unrolling Small Loops

Optimization
Completely unroll loops that have a small fixed loop count and a small loop body.

Application
This optimization applies to:

• 32-bit software

• 64-bit software

Rationale
Many compilers do not aggressively unroll loops. Manually unrolling loops can benefit performance, 
especially if the loop body is small, making the loop overhead significant.

Unrolling loops increases the code size, which may decrease performance in rare cases.

Example
Avoid a small loop like this:

// 3D-transform: Multiply vector V by 4x4 transform matrix M.
for (i = 0; i < 4; i++) {
   r[i] = 0;
   for (j = 0; j < 4; j++) {
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      r[i] += m[j][i] * v[j];
   }
}

Instead, replace it with its completely unrolled equivalent, as shown here:

r[0] = m[0][0] * v[0] + m[1][0] * v[1] + m[2][0] * v[2] + m[3][0] * v[3];
r[1] = m[0][1] * v[0] + m[1][1] * v[1] + m[2][1] * v[2] + m[3][1] * v[3];
r[2] = m[0][2] * v[0] + m[1][2] * v[1] + m[2][2] * v[2] + m[3][2] * v[3];
r[3] = m[0][3] * v[0] + m[1][3] * v[1] + m[2][3] * v[2] + m[3][3] * v[3];

Related Information
For information on loop unrolling at the assembly-language level, see “Loop Unrolling” on page 129.

3.5 Expression Order in Compound Branch 
Conditions

Optimization
In the most active areas of a program, order the expressions in compound branch conditions to take 
advantage of short circuiting of compound conditional expressions.

Application
This optimization applies to:

• 32-bit software

• 64-bit software

Rationale
Branch conditions in C programs often consist of compound conditions consisting of multiple 
boolean expressions joined by the logical AND (&&) or logical OR (||) operators. C compilers 
guarantee short-circuit evaluation of these operators. In a compound logical OR expression, the first 
operand to evaluate to true terminates the evaluation, and subsequent operands are not evaluated at 
all. Similarly, in a logical AND expression, the first operand to evaluate to false terminates the 
evaluation. Hence, it is not always possible to swap the operands of logical OR and logical AND. 
This is especially true when the evaluation of one of the operands causes a side effect. In most cases 
the order of operands in such expressions is irrelevant.

When used to control conditional branches, expressions involving logical OR or logical AND are 
translated into a series of conditional branches. The ordering of the conditional branches is a function 
of the ordering of the expressions in the compound condition and can have a significant impact on 
performance. It is impossible to give an easy, closed-form formula on how to order the conditions. 
Overall performance is a function of the following factors:
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• Probability of a branch misprediction for each of the branches generated

• Additional latency incurred due to a branch misprediction

• Cost of evaluating the conditions controlling each of the branches generated

• Amount of parallelism that can be extracted in evaluating the branch conditions

• Data stream consumed by an application (mostly due to the dependence of misprediction 
probabilities on the nature of the incoming data in data-dependent branches)

It is recommended to experiment with the ordering of expressions in compound branch conditions in 
the most active areas of a program (“hot spots,” consuming a great amount of execution time). Such 
hot spots can be found through the use of profiling by feeding a typical data stream to the program 
while doing the experiments.

3.6 Arrange Boolean Operands for Quick Expression 
Evaluation

Optimization
In expressions that use the logical AND (&&) or logical OR (||) operator, arrange the operands for 
quick evaluation of the expression:

Application
This optimization applies to:

• 32-bit software

• 64-bit software

Rationale
C and C++ compilers guarantee short-circuit evaluation of the boolean operators && and ||. In an 
expression that uses &&, the first operand to evaluate to false terminates the evaluation; subsequent 
operands are not evaluated. In an expression that uses ||, the first operand to evaluate to true 
terminates the evaluation.

When used to control program flow, expressions involving && and || are translated into a series of 
conditional branches. This optimization minimizes the total number of conditions evaluated and 
branches executed.

If the expression uses this 
operator

Then arrange the operands from left to right in decreasing 
probability of being

&& (logical AND) False
|| (logical OR) True
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Example 1
In the following code, the operands of && are not arranged for quick expression evaluation because 
the first operand is not the condition case most likely to be false (it is far less likely for an animal 
name to begin with a ‘y’ than for it to have fewer than four characters):

char animalname[30];
char *p;

p = animalname;

if ((strlen(p) > 4) && (*p == 'y')) { ... }

Because the odds that the animal name begins with a ‘y’ are comparatively low, it is better to put that 
operand first:

if ((*p == 'y') && (strlen(p) > 4)) { ... }

Example 2
In the following code (assuming a uniform random distribution of i), the operands of || are not 
arranged for quick expression evaluation because the first operand is not the condition most likely to 
be true:

unsigned int i;

if ((i < 4) || (i & 1)) { ... }

Because it is more likely for the least-significant bit of i to be 1, it is better to put that operand first:

if ((i & 1) || (i < 4)) { ... }

3.7 Long Logical Expressions in If Statements

Optimization
In if statements, avoid long logical expressions that can generate dense conditional branches that 
violate the guideline described in “Instruction Fetch” on page 119. When long logical expressions are 
unavoidable, try to arrange them so that most of the implicit branches are not be taken.

Application
This optimization applies to:

• 32-bit software

• 64-bit software
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Rationale
High branch density can lead to some branches not being identified by the branch predictor (as 
described in section “Instruction Fetch” on page 119). If these unpredicted branches are  taken, they 
will incur a misprediction penalty.

Preferred for Data that Falls Mostly Within the Range
if (a <= max && a >= min && b <= max && b >= min)

If most of the data falls within the range, the branches will not be taken, so the above code is 
preferred. Otherwise, the following code is preferred.

Preferred for Data that Does Not Fall Mostly Within the Range
if (a > max || a < min || b > max || b < min)

3.8 Pointer Alignment

Optimization
Use the following technique to align a pointer to a 16-byte boundary in situations where alignment 
cannot be assured.

Application
This optimization applies to:

• 32-bit software

• 64-bit software

Examples
Dynamic memory allocation—accomplished through the use of the malloc library function in C—
should always return a pointer that is suitably aligned for the largest base type (16-byte alignment). 
However, this may not always be the case. In this example, after memory allocation, use np instead of 
p to access the data. The pointer p is still needed in order to deallocate the storage later.

double *p;
double *np;

p = (double *)malloc(sizeof(double) * number_of_doubles + 15);
np = (double *)((((ptrdiff_t)(p)) + 15L) & (-16L));
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3.9 Unnecessary Store-to-Load Dependencies

Optimization
Avoid store-to-load dependencies.

Application
This optimization applies to:
• 32-bit software

• 64-bit software

Rationale
A store-to-load dependency exists when data is stored to memory, only to be read back shortly 
thereafter. For details, see “Store-to-Load Forwarding Restrictions” on page 98. The 
AMD Family 15h processor contains hardware to accelerate such store-to-load dependencies, 
allowing the load to obtain the store data before it has been written to memory. However, avoiding 
such dependencies and keeping the data in an internal register results in faster code. 

It is especially important to avoid store-to-load dependencies if they are part of a long dependency 
chain, as may occur in a recurrence computation. If the dependency occurs while operating on arrays, 
many compilers are unable to optimize the code in a way that avoids the store-to-load dependency. In 
some instances the language definition may prohibit the compiler from using code transformations 
that would remove the store-to-load dependency. Therefore, it is recommended that the programmer 
remove the dependency manually, for example, by introducing a temporary variable that can be kept 
in a register. This can result in a significant performance increase.

Examples

Avoid
// In the following loops, each iteration writes to the memory location
// referenced by x[k], but then reads from this same location in the 
// subsequent iteration, where it becomes x[k-1]. This creates a store-to-load
// dependency.

double x[VECLEN], y[VECLEN], z[VECLEN];
unsigned int k;

for (k = 1; k < VECLEN; k++) {

x[k] = x[k-1] + y[k]; // x[k] is written to in iteration k and then 
                      // read in iteration k+1

}

for (k = 1; k < VECLEN; k++) {
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x[k] = z[k] * (y[k] - x[k-1]); //x[k] is written to in iteration k and then read 
in iteration k+1
}

Preferred
double x[VECLEN], y[VECLEN], z[VECLEN];
unsigned int k;
double t;
t = x[0];

// By using the temporary variable t to store the partial accumulated 
// computations
// from each iteration, the restructured loops below are able to avoid
// having to read
// the memory location referenced by x[k] immediately after writing
// to this same location in the previous iteration.

for (k = 1; k < VECLEN; k++) {

t = t + y[k];

x[k] = t; // x[k] is written to in iteration k, but not read in iteration k+1

}

t = x[0];
for (k = 1; k < VECLEN; k++) {
t = z[k] * (y[k] - t);
x[k] = t;       //x[k] is written to in iteration k, but not read in iteration k+1

3.10 Matching Store and Load Size

Optimization
Align memory accesses and match addresses and sizes of stores and dependent loads.

Application
This optimization applies to:

• 32-bit software

• 64-bit software

Rationale
The AMD Family 15h processor contains a load-store buffer to speed up the forwarding of store data 
to dependent loads. However, this store-to-load forwarding (STLF) inside the load-store buffer 
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occurs, in general, only when the addresses and sizes of the store and the dependent load match, and 
when both memory accesses are aligned.

For details, see “Store-to-Load Forwarding Restrictions” on page 98.

It is impossible to control load and store activity at the source level in such a way as to avoid all cases 
that violate restrictions placed on store-to-load-forwarding. In some instances it is possible to spot 
such cases in the source code. Size mismatches can easily occur when different-size data items are 
joined in a union. Address mismatches could be the result of pointer manipulation.

The following examples show a situation involving a union of different-size data items. The examples 
show a user-defined unsigned 16.16 fixed-point type and two operations defined on this type. 
Function fixed_add adds two fixed-point numbers, and function fixed_int extracts the integer 
portion of a fixed-point number. Listing  shows an inappropriate implementation of fixed_int, 
which, when used on the result of fixed_add, causes misalignment, address mismatch, or size 
mismatch between memory operands, such that no store-to-load forwarding in the load-store buffer 
takes place. The following examples shows how to properly implement fixed_int in order to allow 
store-to-load forwarding in the load-store buffer.

Examples

Avoid

typedef union {
   unsigned int whole;
   struct {
      unsigned short frac; /* Lower 16 bits are fraction. */
      unsigned short intg; /* Upper 16 bits are integer.  */
   } parts;
} FIXED_U_16_16;

__inline FIXED_U_16_16 fixed_add(FIXED_U_16_16 x, FIXED_U_16_16 y) {
     FIXED_U_16_16 z;
     z.whole = x.whole + y.whole;
     return (z);
}

__inline unsigned int fixed_int(FIXED_U_16_16 x) {
     return((unsigned int)(x.parts.intg));
}
...
FIXED_U_16_16 y, z;
unsigned int q;
...
label1:
y = fixed_add (y, z);
q = fixed_int (y);

label2:
...
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The object code generated for the source code between label1 and label2 typically follows one of 
these two variants:

; Variant 1
mov edx, DWORD PTR [z]
mov eax, DWORD PTR [y]     ;  
add eax, edx               ;  
mov DWORD PTR [y], eax     ; -+
mov EAX, DWORD PTR [y+2]   ; <+ Address mismatch--no forwarding in LSU
and EAX, 0FFFFh
mov DWORD PTR [q], eax

; Variant 2
mov   edx, DWORD PTR [z]
mov   eax, DWORD PTR [y]    ; 
add   eax, edx              ;  
mov   DWORD PTR [y], eax    ; -+
movzx eax, WORD PTR [y+2]   ; <+ Size and address mismatch--no forwarding in LSU
mov   DWORD PTR [q], eax

Some more sophisticated compilers may generate optimal machine code even for the previous 
example. These compilers provide various optional levels and types of optimizations that are 
controlled by compiler program flags. When compiled at a moderate level of optimization, such 
compilers may generate perfectly acceptable code from C++ code such as that listed above. For more 
information, see Compiler Usage Guidelines for 64-Bit Operating Systems on AMD64 Platforms 
Application Note, order# 32035.

Preferred

typedef union {
   unsigned int whole;
   struct {
      unsigned short frac; /* Lower 16 bits are fraction. */
      unsigned short intg; /* Upper 16 bits are integer.  */
   } parts;
} FIXED_U_16_16;

__inline FIXED_U_16_16 fixed_add(FIXED_U_16_16 x, FIXED_U_16_16 y) {
   FIXED_U_16_16 z;
   z.whole = x.whole + y.whole; 
   return(z);
}

__inline unsigned int fixed_int(FIXED_U_16_16 x) {
   return (x.whole >> 16);
}
...
FIXED_U_16_16 y, z;
unsigned int q;
...
label1:
y = fixed_add (y, z);
q = fixed_int (y);
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label2:
...

The object code generated for the source code between label1 and label2 typically looks like this:

mov edx, DWORD PTR [z]
mov eax, DWORD PTR [y]
add eax, edx
mov DWORD PTR [y], eax   ; -+
mov eax, DWORD PTR [y]   ; <+ Aligned (size/address match)--forwarding in LSU
shr eax, 16
mov DWORD PTR [q], eax

3.11 Use of const Type Qualifier

Optimization
For objects whose values will not be changed, use the const type qualifier.

Application
This optimization applies to:

• 32-bit software

• 64-bit software

Rationale
Using the const type qualifier makes code more robust and may enable the compiler to generate 
higher-performance code. For example, under the C standard, a compiler is not required to allocate 
storage for an object that is declared const, if its address is never used. 

3.12 Generic Loop Hoisting

Optimization
To improve the performance of inner loops, reduce redundant constant calculations (that is, loop-
invariant calculations). This idea can also be extended to invariant control structures.

Application
This optimization applies to:

• 32-bit software

• 64-bit software
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Rationale and Examples
The following example demonstrates the use of an invariant condition in an if statement in a for 
loop. The second listing shows the preferred optimization.

Avoid

for (i...) {
   if (CONSTANT0) {
      DoWork0(i);   // Does not affect CONSTANT0.
   }
   else {
      DoWork1(i);   // Does not affect CONSTANT0.
   }
}

Preferred

if (CONSTANT0) {
   for (i...) {
      DoWork0(i);
   }
}
else {
   for (i...) {
      DoWork1(i);
   }
}

The preferred optimization in the preceding example tightens the inner loops by avoiding repetitious 
evaluation of a known if control structure. Although the branch would be easily predicted, the extra 
instructions and decode limitations imposed by branching are eliminated.

To generalize the preceding example further for multiple-constant control code, more work may be 
needed to create the proper outer loop. Enumeration of the constant cases reduces this to a simple 
switch statement.

Avoid

for (i...) {
   if (CONSTANT0) {
      DoWork0(i);   // Does not affect CONSTANT0 or CONSTANT1.
   }
   else {
      DoWork1(i);   // Does not affect CONSTANT0 or CONSTANT1.
   }

   if (CONSTANT1) {
      DoWork2(i);   // Does not affect CONSTANT0 or CONSTANT1.
   }
   else {
      DoWork3(i);   // Does not affect CONSTANT0 or CONSTANT1.
   }
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}

Transform the loop in the preceding example (by using the switch statement) into:

Preferred

#define combine(c1, c2) (((c1) << 1) + (c2))
switch (combine(CONSTANT0 != 0, CONSTANT1 != 0)) {
   case combine(0, 0):
      for(i...) {
         DoWork0(i);
         DoWork2(i);
      }
      break;
   case combine(1, 0):
      for(i...) {
         DoWork1(i);
         DoWork2(i);
      }
      break;
   case combine(0, 1):
      for(i...) {
         DoWork0(i);
         DoWork3(i);
      }
      break;
   case combine( 1, 1 ):
      for(i...) {
         DoWork1(i);
         DoWork3(i);
      }
      break;
   default:
      break;
}

Some introductory code is necessary to generate all the combinations for the switch constant and the 
total amount of code has doubled. However, the inner loops are now free of if statements. In ideal 
cases where the DoWorkn functions are inlined, the successive functions have greater overlap, leading 
to greater parallelism than possible in the presence of intervening if statements.

The same idea can be applied to constant switch statements or to combinations of switch statements 
and if statements inside of for loops. The method used to combine the input constants becomes 
more complicated but benefits performance.

However, the number of inner loops can also substantially increase. If the number of inner loops is 
prohibitively high, then only the most common cases must be dealt with directly, and the remaining 
cases can fall back to the old code in the default clause of the switch statement. This situation is 
typical of run-time generated code. While the performance of run-time generated code can be 
improved by means similar to those presented here, it is much harder to maintain and developers must 
do their own code-generation optimizations without the help of an available compiler.
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3.13 Local Static Functions

Optimization
Declare as static functions that are not used outside the file where they are defined.

Application
This optimization applies to:

• 32-bit software

• 64-bit software

Rationale
Declaring a function as static forces internal linkage. Functions that are not declared as static 
default to external linkage, which may inhibit certain optimizations—for example, aggressive 
inlining—with some compilers. In C++, programmers can declare functions inside an anonymous 
namespace to achieve the same local scoping effect.

3.14 Explicit Parallelism in Code

Optimization
Where possible, break long dependency chains into several independent chains that can be executed 
in parallel to take advantage of the execution units in each pipeline. 

Application
This optimization applies to:

• 32-bit software

• 64-bit software

Rationale
Breaking long dependency chains into smaller parallelizable chains can improve performance. This is 
especially important for floating point code, due to the longer latency of floating point operations. 

It should be remarked, however, that the reordered code may not produce identical computational 
results, since floating point operations are not associative. For this reason, most languages (including 
ANSI C) are bound by the requirement that floating-point expressions cannot be reordered, and 
compilers in those languages cannot reorder these expressions unless they support a flag for non-
compliant reordering. In some cases, reordered floating-point code may lead to unexpected results, 
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but in most cases, the final result differs only in the least-significant bits. There are well-known 
numerical considerations in applying this optimization. For details, consult a reference on numerical 
analysis. 

Example
When deciding how aggressively to unroll a loop, a key consideration is how many instructions need 
to be in-flight to keep all the pipelines and execution units busy in every iteration. For handling 
floating point code, there are two identical FP pipelines, each having a 5 cycle  latency for the 
execution phase. This means that a total of ten floating point instructions need to be in flight in every 
loop iteration to keep both FP pipelines and the 5-stage FP adder busy on every cycle. Below is an 
example that shows how a loop can be unrolled to fully utilize the FP resources on every cycle. 
Notice that the assembly code shown for the unrolled loop body involves ten floating point additions 
in each iteration. This will keep both FP pipelines fully occupied at every cycle.

Original Loop (Avoid)

double a[100], sum;
int i;

sum = 0.0f;
for (i = 0; i < 100; i++) {
   sum += a[i];
}



Chapter 3 C and C++ Source-Level Optimizations 61

Software Optimization Guide for AMD Family 15h Processors47414 Rev. 3.06 January 2012

Unrolled Loop Body Source (Preferred)

for (i = 0; i < 100; i += 10) {
sum1 += a[i];
sum2 += a[i+1];
sum3 += a[i+2];
sum4 += a[i+3];
sum5 += a[i+4];
sum6 += a[i+5];
sum7 += a[i+6];
sum8 += a[i+7];
sum9 += a[i+8];
sum10 += a[i+9];
}

Unrolled Loop Body (AVX Code)

.code
public loopunrollavx

loopunrollavx proc
        xor r11,r11    
        xorpd xmm0,xmm0 ;xmm0 = 0
        vmovsd xmm0,QWORD PTR [rdx] ;xmm0 = sum
label1:

        vaddsd xmm0,xmm0,QWORD PTR [r8+r11*8]    ;xmm0+=a[i]   
        vaddsd xmm0,xmm0,QWORD PTR [r8+r11*8+8]  ;xmm0+=a[i+1]  
        vaddsd xmm0,xmm0,QWORD PTR [r8+r11*8+16] ;xmm0+=a[i+2]
        vaddsd xmm0,xmm0,QWORD PTR [r8+r11*8+24] ;xmm0+=a[i+3]
        vaddsd xmm0,xmm0,QWORD PTR [r8+r11*8+32] ;xmm0+=a[i+4]
        vaddsd xmm0,xmm0,QWORD PTR [r8+r11*8+40] ;xmm0+=a[i+5]
        vaddsd xmm0,xmm0,QWORD PTR [r8+r11*8+48] ;xmm0+=a[i+6]
        vaddsd xmm0,xmm0,QWORD PTR [r8+r11*8+56] ;xmm0+=a[i+7]
        vaddsd xmm0,xmm0,QWORD PTR [r8+r11*8+64] ;xmm0+=a[i+8]
        vaddsd xmm0,xmm0,QWORD PTR [r8+r11*8+72] ;xmm0+=a[i+9] 
        add r11,10
        cmp r11,rcx               ;i < counter? 
        jl label1
        vmovntpd XMMWORD PTR [rdx],xmm0       ;*sum = XMM0 
        ret
loopunrollavx endp

end 
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3.15 Extracting Common Subexpressions

Optimization
Manually extract common subexpressions from floating-point expressions, where C compilers may 
be unable to extract them due to the rules against reordering of floating-point expressions in the ANSI 
standard. 

Application
This optimization applies to:

• 32-bit software

• 64-bit software

Rationale
Specifically, the compiler cannot rearrange the computation according to algebraic equivalencies 
before extracting common subexpressions. Rearranging the expression may give different 
computational results due to the lack of associativity of floating-point operations, but the results 
usually differ in only the least-significant bits. However, since errors in the least significant bits can 
be magnified by later operations to the extent that they completely invalidate the calculation, the 
programmer should proceed with caution when implementing this sort of computation.

Examples

Avoid

double a, b, c, d, e, f;

e = b * c / d;
f = b / d * a;

Preferred

double a, b, c, d, e, f, t;

t = b / d;
e = c * t;
f = a * t;

Avoid

double a, b, c, e, f;

e = a / c;
f = b / c;
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Preferred

double a, b, c, e, f, t;

t = 1 / c;
e = a * t
f = b * t;

3.16 Sorting and Padding C and C++ Structures

Optimization
Sort and pad C and C++ structures to achieve natural alignment.

Application
This optimization applies to:

• 32-bit software

• 64-bit software

Rationale
In order to achieve better alignment for structures, many compilers have options that allow padding of 
structures to make their sizes multiples of words, doublewords, or quadwords. In addition, to improve 
the alignment of structure members, some compilers may allocate structure elements in an order that 
differs from the order in which they are declared. Unfortunately, some compilers may not offer any of 
these features, or their implementations might not work properly in all situations.

By sorting and padding structures at the source-code level, if the first member of a structure is 
naturally aligned, then all other members are naturally aligned as well. This allows, for example, 
arrays of structures to be perfectly aligned.
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Sorting and Padding C and C++ Structures

To sort and pad a C or C++ structure, follow these steps:

1. Sort the structure members according to their type sizes, declaring members with larger type sizes 
ahead of members with smaller type sizes.

2. Pad the structure so the size of the structure is a multiple of the largest member’s type size.

Examples
Avoid structure declarations in which the members are not declared in order of their type sizes and the 
size of the structure is not a multiple of the size of the largest member’s type:

struct {
   char a[5];   \\ Smallest type size (1 byte * 5)
   long k;      \\ 4 bytes in this example
   double x;    \\ Largest type size (8 bytes)
} baz;

Instead, declare the members according to their type sizes (largest to smallest) and add padding to 
ensure that the size of the structure is a multiple of the largest member’s type size:

struct {
   double x;      \\ Largest type size (8 bytes)
   long k;        \\ 4 bytes in this example
   char a[5];     \\ Smallest type size (1 byte * 5)
   char pad[7];   \\ Make structure size a multiple of 8.
} baz;

3.17 Replacing Integer Division with Multiplication

Optimization
Replace integer division with multiplication when there are multiple divisions in an expression. (This 
is possible only if no overflow will occur during the computation of the product. The possibility of an 
overflow can be determined by considering the possible ranges of the divisors.)

Application
This optimization applies to:

• 32-bit software

• 64-bit software

Rationale
Integer division is the slowest of all integer arithmetic operations.
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Examples
Avoid code that uses two integer divisions:

int i, j, k, m;

m = i / j / k;

Instead, replace one of the integer divisions with the appropriate multiplication:

m = i / (j * k);

3.18 Frequently Dereferenced Pointer Arguments

Optimization
Avoid dereferenced pointer arguments inside a function. 

Application
This optimization applies to:

• 32-bit software

• 64-bit software

Rationale
Because the compiler has no knowledge of aliasing between pointers, such dereferencing cannot be 
“optimized away.” Since data may not be maintained in registers, memory traffic can significantly 
increase.

Many compilers have an “assume no aliasing” optimization switch. This allows the compiler to 
assume that two different pointers always have disjoint contents and does not require copying of 
pointer arguments to local variables. If your compiler does not have this type of optimization, then 
copy the data referenced by the pointer arguments to local variables at the start of the function and if 
necessary copy them back at the end of the function. (Some compilers also provide keywords to 
provide the same aliasing information to the compiler. For details, see Compiler Usage Guidelines for 
64-Bit Operating Systems on AMD64 Platforms Application Note, order# 32035.)

Examples

Avoid

// Assumes pointers are different and q != r.
void isqrt(unsigned long a, unsigned long *q, unsigned long *r) {

   *q = a;
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   if (a > 0) {
      while (*q > (*r = a / *q)) {
         *q = (*q + *r) >> 1;
      }
   }
   *r = a - *q * *q;
}

Preferred

// Assumes pointers are different and q != r.
void isqrt(unsigned long a, unsigned long *q, unsigned long *r) {

   unsigned long qq, rr;
   qq = a;
   if (a > 0) {
      while (qq > (rr = a / qq)) {
         qq = (qq + rr) >> 1;
      }
   }
   rr = a - qq * qq;
   *q = qq;
   *r = rr;
}

3.19 32-Bit Integral Data Types

Optimization
Use 32-bit integers instead of smaller sized integers (16-bit or 8-bit). 

Application
This optimization applies to:

• 32-bit software

• 64-bit software

Rationale
When choosing between 32-bit, 16-bit and 8-bit data types in cases where memory footprint is not a 
concern, using 32-bit integer types in 32-bit software (32-bit or 64-bit integer types in 64-bit 
software) avoids possible register-merging false dependencies due to partial register writes. See 
section 5.5, "Partial-Register Writes" on page 84 for details.
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3.20 Sign of Integer Operands

Optimization
Where there is a choice of using either a signed or an unsigned type, take into consideration that some 
operations are faster with unsigned types while others are faster for signed types.

Application
This optimization applies to:

• 32-bit software

• 64-bit software

Rationale
In many cases, the type of data to be stored in an integer variable determines whether a signed or an 
unsigned integer type is appropriate. For example, to record the weight of a person in pounds, no 
negative numbers are required, so an unsigned type is appropriate. However, recording temperatures 
in degrees Celsius may require both positive and negative numbers, so a signed type is needed. 

Integer-to-floating-point conversion using integers larger than 16 bits is faster with signed types, as 
the AMD64 architecture provides instructions for converting signed integers to floating-point but has 
no instructions for converting unsigned integers. In a typical case, a 32-bit integer is converted by a 
compiler to assembly as follows:

Example
Computing quotients and remainders in integer division by constants is faster when performed on 
unsigned types. The following typical case is the compiler output for a 32-bit integer divided by 4:

Avoid

int i;       ====>   mov eax, i
                     cdq
i = i / 4;           and edx, 3
                     add eax, edx
                     sar eax, 2
                     mov i, eax

Preferred

unsigned int i;   ====>   shr  i, 2

i = i / 4;

In summary, use unsigned types for:
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• Division and remainders

• Loop counters

• Array indexing

Use signed types for:

• Integer-to-floating-point conversion

3.21 Improving Performance in Linux® Libraries

Optimization
If symbol interposition is not important to a particular application, then you should control the 
visibility of the symbols in a shared object in such a way as to optimize internal references to other 
symbols in the library and minimize the symbol export table size.

Application
This optimization applies to:

• 32-bit software 

• 64-bit software

Rationale
Dynamically loadable libraries are a versatile feature of the Linux® operating system. These allow 
one or more symbols in one library to override an identical symbol in another library. Known as 
interposition, this ability makes customizations and probing seamless. Interposition is implemented 
by means of a procedure linkage table (PLT). The PLT is so flexible that even references to an 
overridden symbol inside its own library end up referencing the overriding symbol. However, the PLT 
imposes a performance penalty by requiring all function calls to public global routines to go through 
an extra step that increases the chances of cache misses and branch mispredictions. This is 
particularly severe for C++ classes whose methods refer to other methods in the same class.

When using ld to link a shared object, include the command line option -Bsymbolic. 

If using a version of gcc prior to 4.0 to link a shared object, add the option -Wl,-Bsymbolic to the 
command-line. If using gcc 4.0 or later, add the option -fvisibility=protected to the command-
line. 

If finer control is desired, then it is possible to specify -fvisibility=hidden to gcc 4.0 or later and 
then add __attribute__ ((visibility ("default"))) to each symbol that should be exported. 
When building C++ shared objects, also consider using the -fvisibility-inlines-hidden option.
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3.22 Aligning Matrices

Optimization
When using multi-dimensional arrays or matrices, make sure that each row or 2nd-order dimension 
starts at a 16-byte boundary.

Application
This optimization applies to:

•     32-bit software

•     64-bit software

Rationale
Instead of creating matrices with arbitrary dimensions, make sure that the size in bytes of the low-
order dimension is a multiple of 16 and that it starts at a 16-byte boundary. By doing so, when 
iterating over the elements of the matrix the compiler is presented with data properly aligned for low-
cost vectorization.

For example, in:

  double a [10][11], 
         b [10][11];
  int i, j;

  for (j = 0; j < 10; j++)
    for (i = 0; i < 11; i++)
      b [j][i] = a [j][i] * M_1_PI;

Declare the matrices in this way:

__declspec (align (16))
       double a [10][ ((11 * sizeof (double) + 15) / 16) * 16 / sizeof (double)],
              b [10][ ((11 * sizeof (double) + 15) / 16) * 16 / sizeof (double)];
int i, j;

for (j = 0; j < 10; j++)
  for (i = 0; i < 11; i++)
    b [j][i] = a [j][i] * M_1_PI;

However, be aware of cache-bank conflicts for best performance. For more information, see section 
6.7, "Placing Code and Data in the Same 64-Byte Cache Line" on page 112. 
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Chapter 4 General 64-Bit Optimizations

The AMD x86-64 architecture provides a compatibility mode, which allows a 64-bit operating system 
to run existing 16-bit and 32-bit applications, and a 64-bit mode, which provides 64-bit addressing 
and expanded register resources to improve performance for recompiled 64-bit programs. This 
chapter presents general optimizations to improve the performance of software designed to run in 
64-bit mode.

This chapter covers the following topics:

4.1 64-Bit Registers and Integer Arithmetic

Optimization
Use 64-bit registers for 64-bit integer arithmetic.

Rationale
Using 64-bit registers instead of their 32-bit equivalents can dramatically reduce the amount of code 
necessary to perform 64-bit integer arithmetic.

Example 1
This code performs 64-bit addition using 32-bit registers:

; Add ECX:EBX to EDX:EAX, and place sum in EDX:EAX.
00000000  03 C3  add  eax, ebx
00000002  13 D1  adc  edx, ecx

Using 64-bit registers, the previous code can be replaced by one simple instruction (assuming that 
RAX and RBX contain the 64-bit integer values to add):

00000000  48 03 C3  add  rax, rbx

Although the preceding instruction requires one additional byte for the REX prefix, it is still one byte 
shorter than the original code. More importantly, this instruction still has a latency of only one cycle, 
uses two fewer registers, and occupies only one decode slot.

Topic Page
64-Bit Registers and Integer Arithmetic 71
Using 64-bit Arithmetic for Large-Integer Multiplication 73
128-Bit Media Instructions and Floating-Point Operations 77
32-Bit Legacy GPRs and Small Unsigned Integers 77
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Example 2
To perform the low-order half of the product of two 64-bit integers using 32-bit registers, a procedure 
such as the following is necessary:

; In:        [ESP+8]:[ESP+4] = multiplicand
;            [ESP+16]:[ESP+12] = multiplier
; Out:       EDX:EAX = (multiplicand * multiplier) % 2^64
; Modifies: EAX, ECX, EDX, EFlags

llmul PROC
   mov edx, [esp+8]    ; multiplicand_hi
   mov ecx, [esp+16]   ; multiplier_hi
   or  edx, ecx        ; One operand >= 2^32?
   mov edx, [esp+12]   ; multiplier_lo
   mov eax, [esp+4]    ; multiplicand_lo
   jnz twomul          ; Yes, need two multiplies.
   mul edx             ; multiplicand_lo * multiplier_lo
   ret                 ; Done, return to caller.

twomul:
   imul edx, [esp+8]         ; p3_lo = multiplicand_hi * multiplier_lo
   imul ecx, eax             ; p2_lo = multiplier_hi * multiplicand_lo
   add  ecx, edx             ; p2_lo + p3_lo
   mul  dword ptr [esp+12]   ; p1 = multiplicand_lo * multiplier_lo
   add  edx, ecx             ; p1 + p2_lo + p3_lo = result in EDX:EAX
   ret                       ; Done, return to caller.

llmul ENDP

Using 64-bit registers, the entire product can be produced with only one instruction:

; Multiply RAX by RBX. The 128-bit product is stored in RDX:RAX.
00000000  48 F7 EB  imul  rbx

Related Information
For more examples of 64-bit arithmetic using only 32-bit registers, see the example on page 75 and  
“Efficient 64-Bit Integer Arithmetic in 32-Bit Mode” on page 148.
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4.2 Using 64-bit Arithmetic for Large-Integer 
Multiplication

Optimization
Use 64-bit arithmetic for integer multiplication that produces 128-bit or larger products.

Background
Large integer multiplications (those involving 128-bit or larger products) are utilized in a variety of  
applications, such as cryptography software, which figure prominently in e-commerce applications 
and secure transactions on the Internet. Processors cannot perform large-number multiplication 
natively; they must break the operation into chunks that are permitted by their architecture (32-bit or 
64-bit additions and multiplications).

Rationale
Using 64-bit rather than 32-bit integer operations dramatically reduces the number of additions and 
multiplications required to compute large products. For example, computing a 1024-bit product using 
64-bit arithmetic requires fewer than one quarter the number of instructions required when using 
32-bit operations:

In addition, the processor performs 64-bit additions just as fast as it performs 32-bit additions (see 
appendix B for differences in latency information).

Example
Consider the multiplication of two unsigned 64-bit numbers a and b, represented in terms of 32-bit 
components a1:a0 and b1:b0.

a = a1 * 232 + a0

b = b1 * 232 + b0

The product of a and b, calculated using the FOIL method of the polynomials above, can be 
expressed in terms of products of the 32-bit components, as follows:

Formula 3.1

c  = (a1 * b1) * 264 + (a1 * b0 + a0 * b1) * 232 + (a0 * b0)

Comparing... 32-bit arithmetic 64-bit arithmetic
Number of multiplications 256 64
Number of additions with carry 509 125
Number of additions 255 63
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Each of the products of the components of a and b (for example, a1 * b1) is composed of 64 bits—an 
upper 32 bits and a lower 32 bits. It is convenient to represent these individual products as d, e, f, and 
g, as follows:

a0 * b0 = d1:d0 = d1 * 232 + d0

a1 * b0 = e1:e0 = e1 * 232 + e0

a0 * b1 = f1:f0 = f1 * 232 + f0

a1 * b1 = g1:g0 = g1 * 232 + g0

Substitution into Formula 3.1 above yields the following equation:

Formula 3.2

c  = (g1 * 232 + g0) * 264 + (e1 * 232 + e0 + f1 * 232 + f0) * 232 + (d1 * 232 + d0)

Simplifying yields this equation:

Formula 3.3

c = g1 * 296 + (e1 + f1 + g0) * 264 + (d1 + e0 + f0) * 232 + d0

It is convenient to represent the terms that are multiplied by each power of 2 as c3, c2, c1, and c0, as 
follows:

g1 = c3

e1 + f1 + g0 = c2

d1 + e0 + f0 = c1

d0 = c0

Substituting again yields:

Formula 3.4

c = c3 * 296 + c2 * 264 + c1 * 232 + c0
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The following procedure performs 64-bit unsigned integer multiplication, as previously illustrated 
using 32-bit integer operations:

; 32bitalu_64x64(int *a, int *b, int *c);
;
; TO ASSEMBLE INTO *.obj DO THE FOLLOWING:
;       ml.exe -coff -c 32bitalu_64x64.asm
;
.586
.K3D
.XMM
_DATA   SEGMENT
tempESP dd 0
_DATA   ENDS
_TEXT   SEGMENT 
ASSUME DS:_DATA
PUBLIC _32bitalu_64x64
_32bitalu_64x64 PROC NEAR
;==============================================================================
; Save the register state. Registers EAX, ECX, and EDX are considered volatile
;  and assumed to be changed, while the registers below must be preserved.
push ebp
mov  ebp, esp
;==============================================================================
; Parameters passed into routine:
;  [ebp+8]   = ->a
;  [ebp+12]  = ->b
;  [ebp+16]  = ->c
;==============================================================================
push ebx
push esi
push edi
;==============================================================================
mov  esi,[ebp+8]      ; ESI = ->a
mov  edi,[ebp+12]     ; EDI = ->b
mov  ecx,[ebp+16]     ; ECX = ->c
push ebp
mov  [tempESP], esp
;==============================================================================
; Multiply 64-bit numbers a and b, each of which is composed of two 32-bit
;  components:
;  a = a1 * 2^32 + a0
;  b = b1 * 2^32 + b0
mov eax,[esi]      ; EAX = a0
mov edx,[edi]      ; EDX = b0
mul edx            ; EDX:EAX = a0*b0 = d1:d0
mov ebx,edx        ; EDX = d1
mov [ecx],eax      ; c0 = EAX
xor esp,esp        ; ESP = 0
xor ebp,ebp        ; EBP = 0
mov eax,[esi+4]    ; EAX = a1
mov edx,[edi]      ; EDX = b0
mul edx            ; EDX:EAX = a1*b0 = e1:e0
add ebx,eax        ; EBX = d1 + e0
adc ebp,edx        ; EBP = e1 + possible carry from d1+e0
adc esp,0          ; Collect possible carry into c3.
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mov eax,[esi]      ; EAX = a0
mov edx,[edx+4]    ; EDX = b1
mul edx            ; EDX:EAX = a0*b1 = f1:f0
add ebx,eax        ; EBX = d1 + e0 + f0
adc ebp,edx        ; EBP = e1 + f1 + carry
adc esp,0          ; Collect possible carry into c3.
mov [ecx+4],ebx    ; c1 = d1 + e0 + f0

mov eax,[esi+4]    ; EAX = a1
mov edx,[edi+4]    ; EDX = b1
mul edx            ; EDX:EAX = a1*b1 = g1:g0
add ebp,eax        ; EBP = e1 + f1 + g0 + carry
adc esp,edx        ; ESP = g1 + carry
mov [ecx+8],ebp    ; c2 = e1 + f1 + g0 + carry
mov [ecx+12],esp   ; c3 = g1 + carry
;==============================================================================
; Restore the register state.
mov esp, [tempESP]
pop ebp
pop edi
pop esi
pop ebx
mov esp, ebp
pop ebp
;==============================================================================
ret
_32bitalu_64x64 ENDP
_TEXT   ENDS
END

To improve performance and substantially reduce code size, the following procedure performs the 
same 64-bit integer multiplication using 64-bit instead of 32-bit operations:

; 64bitalu_64x64(int *a, int *b, int *c);
;
; TO ASSEMBLE INTO *.obj DO THE FOLLOWING:
;       ml64.exe -c 64bitalu_64x64.asm
;
_TEXT   SEGMENT
64bitalu_64x64 PROC NEAR
;==============================================================================
; Parameters passed into routine:
;  rcx = ->a
;  rdx = ->b
;  r8  = ->c
;==============================================================================
mov rax, [rcx]    ; RAX = [a0]
mul [rdx]         ; Multiply [a0] by [b0] such that
                  ;  RDX:RAX = [c1]:[c0].
mov [r8], rax     ; Store 128-bit product of a and b.
mov [r8+8], rdx
;==============================================================================
ret
64bitalu_64x64 ENDP
END
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4.3 128-Bit Media Instructions and Floating-Point 
Operations

Optimization
Use 128-bit SIMD media  instructions instead of x87 or 64-bit media instructions for floating-point 
operations.  Also, where possible utilize AVX over SSE instructions to obtain more optimal code and 
to take advantage of its extensibility.

Rationale
In 64-bit mode, the processor provides eight additional XMM registers (XMM8–XMM15) for a total 
of 16. These extra registers can substantially reduce register pressure in floating-point code written 
using 128-bit media instructions.

Although the processor fully supports the x87 and 64-bit media instructions, there are only eight 
registers available to these instructions (ST(0)–ST(7) or MMX0–MMX7, respectively). Additionally, 
the x87 and 64-bit media instructions require cumbersome register manipulation and mode switches, 
unlike SIMD instructions.

For further information, see Chapter 10, “Optimizing with SIMD Instructions” on page 167.

4.4 32-Bit Legacy GPRs and Small Unsigned Integers

Optimization
Use the 32-bit legacy general-purpose registers (EAX through ESI) instead of their 64-bit extensions 
to store unsigned integer values whose range never requires more than 32 bits, even if subsequent 
statements use the 32-bit value in a 64-bit operation. (For example, use ECX instead of RCX until 
you need to perform a 64-bit operation; then use RCX.)

Rationale
In 64-bit mode, the machine-language representation of many instructions that operate on unsigned 
64-bit register operands requires a REX prefix byte, which increases the size of the code. However, 
instructions that operate on a 32-bit legacy register operand do not require the prefix and have the 
desirable side-effect of clearing the upper 32 bits of the extended register to zero. For example, using 
the AND instruction on ECX clears the upper half of RCX.

Caution
Because the assembler also uses a REX prefix byte to encode the 32-bit sizes of the eight new 64-bit 
general-purpose registers (R8D–R15D), you should only use one of the original eight general-
purpose registers (EAX through ESI) to implement this technique.
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Example
The following example illustrates the unnecessary use of 64-bit registers to calculate the number of 
bytes remaining to be copied by an aligned block-copy routine after copying the first few bytes 
having addresses not meeting the routine’s 8-byte-alignment requirements. The first two statements, 
after the program comments, use the 64-bit R10 register—presumably, because this value is later used 
to adjust a 64-bit value in R8—even though it requires no more than four bits to represent the range of 
values stored in R10. Using R10 instead of a smaller register requires a REX prefix byte (in this case, 
49), which increases the size of the machine-language code.

; Input:
;  R10 = source address (src)
;  R8 = number of bytes to copy (count)
49 F7 DA      neg r10       ; Subtract the source address from 2^64.
49 83 E2 07   and r10, 7    ; Determine how many bytes were copied separately.
4D 2B C2      sub r8, r10   ; Subtract the number of bytes already copied from
                            ;  the number of bytes to copy.

To improve code density, the following rewritten code uses ECX until it is absolutely necessary to use 
RCX, eliminating two REX prefix bytes:

F7 D9      neg ecx       ; Subtract the source address from 2^32 (the processor
                         ; clears the high 32 bits of RCX).
83 E1 07   and ecx, 7    ; Determine how many bytes were copied separately.
4C 2B C1   sub r8, rcx   ; Subtract the number of bytes already copied from
                         ; the number of bytes to copy.
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Chapter 5 Instruction-Decoding 
Optimizations

The optimizations in this chapter are designed to help maximize the number of instructions that the 
processor can decode at one time.

The AMD Family 15h processor instruction fetcher reads 32-byte packets from the L1 instruction 
cache. These packets are 32-byte aligned. The instruction bytes are then merged into a 32-byte pick 
window. On each cycle, the in-order front-end engine selects up to three AMD x86-64 instructions to 
decode from the pick window.

This chapter covers the following topics:

5.1 Load-Execute Instructions for Floating-Point or 
Integer Operands 

A load-execute instruction is an instruction that loads a value from memory into a register and then 
performs an operation on that value. Many general purpose instructions, such as ADD, SUB, AND, 
etc., have load-execute forms:

ADD rax, QWORD PTR [foo]

This instruction loads the value foo from memory and then adds it to the value in the RAX register.

The work performed by a load-execute instruction can also be accomplished by using two discrete 
instructions—a load instruction followed by an execute instruction. The following example employs 
discrete load and execute stages:

MOV rbx, QWORD PTR [foo]
ADD rax, rbx
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The first statement loads the value foo from memory into the RBX register. The second statement 
adds the value in RBX to the value in RAX.

The following optimizations govern the use of load-execute instructions:

• Load-Execute Integer Instructions in section 5.1.1.

• Load-Execute SIMD Instructions with Floating-Point or Integer Operands in section 5.1.2.

• 32/64-Bit vs. 16-Bit Forms of the LEA Instruction in section 5.2.

5.1.1 Load-Execute Integer Instructions

Optimization
When performing integer computations, use load-execute instructions instead of discrete load 

and execute instructions.  Use discrete load and execute instructions only under one or more of the 
following circumstances:

• to explicitly schedule load and execute operations

• to avoid scheduler stalls for longer executing instructions

• if the load target will be used multiple times in different instructions

Application
This optimization applies to:

• 32-bit software

• 64-bit software

Rationale
Most load-execute integer instructions are FastPath single-decodable and can be decoded at the rate 
of four per cycle. Splitting a load-execute integer instruction into two separate instructions reduces 
decoding bandwidth and increases register pressure, which can result in lower performance if the load 
cannot be scheduled to hide the latency.

Under certain conditions, 64-bit code using general purpose registers that uses discrete load and 
execute instructions can be more efficient than code that uses load-execute instructions.  In 64-bit 
code, and particularly in 32-bit code, if the block containing the instructions has high register 
pressure, the optimization advocated in this section is recommended. otherwise it is not.
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5.1.2 Load-Execute SIMD Instructions with Floating-Point or Integer 
Operands

Optimization
When performing floating-point computation using floating-point or integer source operands, 

use load-execute instructions instead of discrete load and execute instructions.

Application
This optimization applies to:

• 32-bit software

• 64-bit software

Rationale
Using load-execute floating-point instructions that take floating-point or integer operands improves 
performance for the following reasons:

• Denser code allows more work to be held in the instruction cache.

• Denser code generates fewer internal macro-ops, allowing the floating-point scheduler to hold 
more work, which increases the chances of extracting parallelism from the code.

The use of load-execute packed SIMD instructions instead of distinct load and execute instructions 
improves performance in cases in which data might not be aligned on a 16-byte boundary. However, 
this requires setting the misaligned exception mask (MXCSR[17]). Setting this bit disables general 
protection exceptions for unaligned loads in SIMD load-execute instructions. See also 
10.3 “Unaligned and Aligned Data Access” on page 169.

Code employing 64-bit general purpose registers can be more efficient without load-execute 
instructions. In 64-bit code, software can benefit from the use of load-execute instructions, if there is 
high register pressure in the block containing the instructions. When register pressure is high, 32-bit 
code benefits most from the use of load-execute instructions. It is also useful to weigh the number of 
uses that will receive a load on an execute operation against register pressure, leaving the value in 
register when register pressure is not significant.

Example
Avoid code such as the following, which uses discrete load and execute SIMD instructions:
movss xmm0, [float_var1]
movss xmm12, [float_var2]
mulss xmm0, xmm12

Instead, use code such as the following, which uses a load-execute SIMD floating-point instruction:
movss xmm0, [float_var1]
mulss xmm0, [float_var2]
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5.2 32/64-Bit vs. 16-Bit Forms of the LEA Instruction

Optimization
Use the 32-bit or 64-bit forms of the Load Effective Address (LEA) instruction rather than the 16-bit 
form.

Application
This optimization applies to:

• 32-bit software

• 64-bit software

Rationale
The 32-bit and 64-bit LEA instructions are implemented as DirectPath operations with an execution 
latency of only two cycles. The 16-bit LEA instruction, however, is a VectorPath instruction, which 
lowers the decode bandwidth and has a longer execution latency.

5.3 Take Advantage of x86 and AMD64 Complex 
Addressing Modes

Optimization
When porting from other architectures, remember that the x86 architecture provides many complex 
addressing modes. By building the effective address in one instruction, the instruction count can 
sometimes be reduced, leading to better code density and greater decode bandwidth. Refer to the 
section on effective addresses in the AMD64 Architecture Programmer's Manual, Volume 1: 
Application Programming, order# 24592 for more detailed information on how effective addresses 
are formed.
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Application
This optimization applies to:

• 32-bit software

• 64-bit software

Rationale
Building the effective address sometimes seems to require numerous instructions when there is a base 
address (such as the base of an array), an index and a displacement (if applicable).  However, the x86 
architecture can often handle all of this information in one instruction. This can reduce code size and 
results in fewer instructions to decode. As always, attention should be paid to total instruction length, 
latencies and whether or not the instruction choices are DirectPath (fastest) or VectorPath (slower).

Example
The first instruction sequence of five instructions having a total latency of 8 can be replaced by one 
instruction.

The following instruction replaces the functionality of the above sequence.

Example
These two instructions:

mov  r11, QWORD PTR ds:0x4c65a
mov  r11, QWORD PTR [r11+r8*8]

can be replaced by one instruction:

mov r11, QWORD PTR [r8*8+0x4c65a]

Number of Bytes Latency Instruction
3 1 mov    r11d, r10d

8 2 lea    rcx, 68E35h

3 1 add    r11, rcx

5 3 mov    cl, BYTE PTR [r11+r13]

2 1 cmp    cl, al

Number of Bytes Latency Instruction
8 4 cmp    BYTE PTR [r10+r13+68E35h], al
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5.4 Short Instruction Encodings

Optimization
Use instruction forms with shorter encodings rather than those with longer encodings. For example, 
use 8-bit displacements instead of 32-bit displacements, and use the single-byte form of simple 
integer instructions instead of the 2-byte opcode-ModR/M form.

Application
This optimization applies to:

• 32-bit software

• 64-bit software

Rationale
Using shorter instructions increases the number of instructions that can fit into the L1 instruction 
cache and increases the average decode rate.

Using short, 8-bit sign-extended displacements for conditional branches improves code density with 
no negative effects on the processor. See 7.1 “Instruction Fetch” on page 119 for more details on 
optimizing branches.

Example
Avoid the use of instructions having longer encodings, such as the following:

81 C0 78 56 34 12  add eax, 12345678h  ; 2-byte opcode form (with ModRM)
81 C3 FB FF FF FF  add ebx, -5         ; 32-bit immediate value
0F 84 05 00 00 00  jz label1           ; 2-byte opcode, 32-bit immediate value

Instead, choose instructions having shorter encodings, such as:

05 78 56 34 12   add eax, 12345678h   ; 1-byte opcode form
83 C3 FB         add ebx, -5          ; 8-bit sign-extended immediate value
74 05            jz  label1           ; 1-byte opcode, 8-bit immediate value

5.5 Partial-Register Writes

Optimization
When writing to a register for the purpose of initialization:

• Avoid instructions that write less than 32 bits of a general purpose integer register.
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• Avoid instructions that write less than 128 bits of an XMM register when using lagacy SIMD 
instructions.

• Avoid mixing legacy SIMD instructions with AVX instructions.

Legacy SIMD instructions behave quite differently from AVX instructions with regard to the 
treatment of the upper bits of YMM registers corresponding to source and destination registers. 
Legacy SIMD instructions do not affect the upper 128-bits of the YMM registers corresponding to 
either source or destination XMM registers. On the other hand, 128-bit AVX instructions do not affect 
the upper 128 bits of the YMM registers corresponding to source XMM operands, but clear the upper 
128 bits of the YMM register corresponding to the XMM destination register. 256-bit AVX 
instructions affect the entire 256-bits of the destination YMM register.

For these reasons, if the use of legacy SIMD instructions is unavoidable,

• Restrict the use of legacy SIMD instructions to sections of code that do not mix legacy SIMD and 
AVX instructions,

• Clear the upper parts of the YMM registers to zeros before executing any legacy SIMD 
instructions,

• When leaving a legacy SIMD section of code, clear the upper parts of all corresponding YMM 
registers before executing any subsequent AVX instructions.

Clearing the upper 128 bits of YMM registers can be accomplished by means of the VZEROUPPER 
AVX instruction.

When writing to a register during the course of a non-initializing operation on the register,

• Avoid partial register writes.

• Schedule any prior operations on the target register well ahead of the point in the code where the 
partial write is to occur.

Application
This optimization applies to:

• 32-bit software

• 64-bit software

Rationale
In order to handle partial register writes, the processor’s execution core implements a data merging 
scheme. In the execution unit, an instruction that writes part of a register merges the modified portion 
with the current state of the other part of the register. This creates a false dependency on the most 
recent instruction that writes to any part of the register.
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When writing to a register for the purpose of register initialization, it is usually possible to avoid false 
dependencies by careful instruction selection. For example, rather than initializing a part of a 
floating-point 128-bit XMM register, initialize the entire 128-bit register.

When possible, choose instructions that write 0's to the unused portions of the full register. For AVX 
instructions that write to YMM, the full 256 bits are written. AVX instructions that write to XMM 
registers zero out the upper 128 bits of the underlying YMM register. Both of these situations avoid 
the partial register write false dependency. 

When writing to a register during the course of a non-initializing legacy SIMD operation on the 
register, there is usually no additional performance loss due to partial register reads and writes. This is 
because, in the typical case, the partial register being written to is also a source operand to the 
operation.

For example, the following instruction does not suffer from merge dependencies:

addsd, xmm1, xmm2

However, in some cases of non-initializing operations on a register, it is preferable to avoid partial 
register writes and replace them with more efficient operations. In these cases, the partial register 
being written by the operation is not a source for the operation. Examples are provided below.

If it is not possible to avoid writing to a part of that register, you should schedule any such prior 
operation on any part of the register well ahead of the point where the partial write occurs. Such cases 
are also listed in the examples.

A general purpose integer register is viewed as a 64-bit register internal to the processor. A floating-
point XMM register is viewed as one 128-bit register internal to the processor. 

AMD Fam 15h processors implement an XMM register merge optimization.

The processor keeps track of XMM registers whose upper portions have been cleared to zeros. This 
information can be followed through multiple operations and register destinations until non-zero data 
is written into a register. For certain instructions, this information can be used to bypass the usual 
result merging for the upper parts of the register. For instance, SQRTSS does not change the upper 96 
bits of the destination register. If some instruction clears the upper 96 bits of its destination register 
and any arbitrary following sequence of instructions fails to write non-zero data in these upper 96 
bits, then the SQRTSS instruction can proceed without waiting for any instructions that wrote to that 
destination register.

The instructions that benefit from this merge optimization are: 

CVTPI2PS CVTSI2SS (32-/64-BIT) MOVSS xmm1, xmm2 FRCZSD
CVTSD2SS CVTSS2SD MOVLPS xmm1, xmm2 FRCZSS
CVTSI2SD 32-/64-BIT) MOVSD xmm1, xmm2 MOVLPD R,R RCPSS
ROUNDSS ROUNDSD RSQRTSS SQRTSD

SQRTSS CVTPI2PS xmm1, xmm2



Chapter 5 Instruction-Decoding Optimizations 87

Software Optimization Guide for AMD Family 15h Processors47414 Rev. 3.06 January 2012

This optimization enables independent iterations of a loop to proceed in parallel by recognizing when 
unused register contents will be zero and preventing a write merge dependency.

Another optimization recognizes MOVLPD/MOVHPD pairs and internally converts the MOVLPD 
to a MOVSD xmm, mem.   Since MOVSD xmm, mem writes a 0 to the upper part of the destination, 
there is no merge dependency on prior instructions  that write to the specified destination register.

There are several instructions that initialize the lower 64 bits or 32 bits of an XMM register that also 
zero out the upper 64 or 96 bits and, thus, do not suffer from merge dependencies. For example, the 
following instructions do not have merge dependencies:

movsd xmm, [mem64]
movss xmm, [mem32]

Integer operations that write to the lower 32 bits of a general purpose integer register do not have a 
false merge dependency because they zero out the upper 32 bits. But operations that write to portions 
of a general purpose integer register narrower than 32 bits should be avoided.

Example 1

Avoid
     

MOV    al, bl

Preferred
     

MOVZX  eax, bl

Example 2

Avoid

MOV    al, [ebx]

Preferred
     

MOVZX  eax, byte ptr [ebx]

Example 3

Avoid
     

MOV    al, 01h

Preferred
     

MOV    eax, 00000001h
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Example 4

Avoid

   VMOVLPD xmm2, xmm1 QWORD PTR [eax]

   VMOVHPD xmm2, xmm1 QWORD PTR [eax]     ; Same memory location as used for 
VMOVLPD.

Preferred

   VMOVDDUP xmm1, QWORD PTR [eax]; 

Note: Family 15h processors all support 128-bit writes, so split forms are no longer needed to 
mitigate performance issues.



Chapter 5 Instruction-Decoding Optimizations 89

Software Optimization Guide for AMD Family 15h Processors47414 Rev. 3.06 January 2012

Example 5

Avoid 

VADDPD xmm1,xmm0,xmm3

MULPD xmm1, xmm2      ; Very bad!!! Legacy SSE instruction
                      ; following 128-bit AVX instruction.

Preferred 

VADDPD xmm1,xmm0,xmm3

VMULPD xmm1,xmm4,xmm2  ; Good! 128-bit AVX instruction 
                       ; following 128-bit AVX instruction.

The legacy SIMD instruction has a merge dependency on the upper part of the YMM destination.  
Also, mixing AVX and legacy SIMD instructions should be avoided.

5.6 Using LEAVE for Function Epilogues

Optimization
The recommended optimization for function epilogues depends on whether the function allocates 
local variables.

Application
This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

Functions That Allocate Local Variables

The LEAVE instruction is a single-byte instruction and saves 2 bytes of code space over the 
traditional epilogue. Replacing the traditional sequence with LEAVE also preserves decode 
bandwidth.

If the function Then
Allocates local variables. Replace the traditional function epilogue with the LEAVE instruction.
Does not allocate local variables or 
does not have a frame-pointer.

Do not use function prologues or epilogues. Access function 
arguments and local variables through rSP.
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Functions That Do Not Allocate Local Variables

Accessing function arguments and local variables directly through ESP frees EBP for use as a 
general-purpose register.

Background
The function arguments and local variables inside a function are referenced through a so-called frame 
pointer. In AMD64 code, the base pointer register (rBP) is customarily used as a frame pointer. You 
set up the frame pointer at the beginning of the function using a function prologue:

push ebp                    ; Save old frame pointer.
mov  ebp, esp               ; Initialize new frame pointer.
sub  esp, n                 ; Allocate space for local variables (only if the
                            ; function allocates local variables).

Function arguments on the stack can now be accessed at positive offsets relative to rBP, and local 
variables are accessible at negative offsets relative to rBP.

Example
The traditional function epilogue looks like this:

mov esp, ebp   ; Deallocate local variables (only if space was allocated).
pop ebp        ; Restore old frame pointer.

Replace the traditional function epilogue with a single LEAVE instruction:

leave

5.7 Alternatives to SHLD Instruction

Optimization
Where register pressure is low, replace the SHLD instruction with alternative code using ADD and 
ADC, or SHR and LEA.
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Application
This optimization applies to:

• 32-bit software

• 64-bit software

Rationale
Using alternative code in place of SHLD achieves lower overall latency and requires fewer execution 
resources. The 32-bit and 64-bit forms of ADD, ADC, SHR, and LEA (except 16-bit form) are 
DirectPath instructions, while SHLD is a VectorPath instruction. Use of the replacement code 
optimizes decode bandwidth because it potentially enables the simultaneous decoding of a third 
DirectPath instruction. However, the replacement code may increase register pressure because it 
destroys the contents of one register (reg2 in the following examples) whereas the register is 
preserved by SHLD.

Example 1
Replace this instruction:

shld reg32a, reg32b, 1 ; Operands are 32-bit registers.

with this code sequence:

add reg32b, reg32b ; Operands are 32-bit registers
adc reg32a, reg32a

Example 2
Replace this instruction:

shld reg1, reg2, 2

with this code sequence:

shr reg2, 30
lea reg1, [reg1*4+reg2]

Example 3
Replace this instruction:

shld reg1, reg2, 3

with this code sequence:

shr reg2, 29
lea reg1, [reg1*8+reg2]
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5.8 Code Padding with Operand-Size Override and 
Multibyte NOP

Optimization
Use the multibyte NOP instruction (0F 1Fh) to align code and space out branches..

Application
This optimization applies to:

• 32-bit software

• 64-bit software

Rationale
Occasionally it is necessary to insert neutral code fillers into the code stream (for example, for code-
alignment purposes or to space out branches). Because this filler code is executable, it should take up 
as few execution resources as possible, should not diminish decode density, and should not modify 
any processor state other than to advance the instruction pointer (rIP). Although there are several 
possible multibyte NOP-equivalent instructions that do not change the processor state (other than 
rIP), combinations of the operand-size override and the multibyte NOP instruction are more efficient. 
These NOP instructions are only available on AMD Athlon™ and later processors. For processors 
older than Athlon, use the standard NOP (opcode 090h) in combination with up to three operand size 
override prefixes (opcode 66h). The use of more than three legacy prefixes limits decoder 
performance.

Example
Assign code-padding sequences like these and use them to align code and space out branches. These 
sequences are suitable for both 32-bit and 64-bit code, and you can use them on the AMD Family 15h 
processors:

NOP1_OVERRIDE_NOP TEXTEQU <DB 090h>
NOP2_OVERRIDE_NOP TEXTEQU <DB 066h, 090h> 
NOP3_OVERRIDE_NOP TEXTEQU <DB 00fh, 01fh, 000h>
NOP4_OVERRIDE_NOP TEXTEQU <DB 00fh, 01fh, 040h, 000h>
NOP5_OVERRIDE_NOP TEXTEQU <DB 00fh, 01fh, 044h, 000h, 000h>
NOP6_OVERRIDE_NOP TEXTEQU <DB 066h, 00fh, 01fh, 044h, 000h, 000h>
NOP7_OVERRIDE_NOP TEXTEQU <DB 00fh, 01fh, 080h, 000h, 000h, 000h, 000h>
NOP8_OVERRIDE_NOP TEXTEQU <DB 00fh, 01fh, 084h, 000h, 000h, 000h, 000h, 000h>
NOP9_OVERRIDE_NOP TEXTEQU <DB 066h, 00fh, 01fh, 084h, 000h, 000h, 000h, 000h, 
000h>
NOP10_OVERRIDE_NOP TEXTEQU <DB 066h, 066h, 00fh, 01fh, 084h, 000h, 000h, 000h, 
000h, 000h>
NOP11_OVERRIDE_NOP TEXTEQU <DB 066h, 066h, 066h, 00fh, 01fh, 084h, 000h, 000h, 
000h, 000h, 000h>
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In certain rare situations, padding of up to 31 bytes can improve performance by aligning “hot” 
branch targets.  For example, run-time profile information may reveal that a forward branch is very 
often taken.  In these cases, generate padding by combining a minimum number of the large NOP 
instructions used in the above code-padding sequences.  Note that NOP instructions which contain 
more than three prefix bytes degrade performance; in this case, use two NOPs to implement the 
alignment.
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Chapter 6 Cache and Memory Optimizations

The optimizations in this chapter take advantage of the 16KB per cluster L1 caches and 2MB shared 
L2 caches of AMD Family 15h processors.

This chapter covers the following topics:

6.1 Memory-Size Mismatches

Optimization
Avoid memory-size mismatches when different instructions operate on the same data. When one 

instruction stores and another instruction subsequently loads the same data, align instruction operands 
and keep the loads/stores of each operand the same size.

Application
This optimization applies to:

• 32-bit software

• 64-bit software

Examples—Store-to-Load-Forwarding Stalls
The following code examples result in a store-to-load-forwarding stall:

 Avoid (64-bit)

foo DQ ?                        ; Assume foo is 8-byte aligned.
...
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mov DWORD PTR foo, eax          ; Store a DWORD to foo.
mov DWORD PTR foo+4, ebx        ; Now store to foo+4.
mov rcx, QWORD PTR foo          ; Load a QWORD from foo.

Avoid (32-bit)

foo DQ ?                        ; Assume foo is 4-byte aligned.
...
mov    foo, eax        ; Store a DWORD in foo.
mov    foo+4, edx      ; Store a DWORD in foo+4.
...
vmovq xmm0, foo             ; Load a QWORD from foo.

Preferred

mov        foo, eax
mov        foo+4, edx
...
vmovd      xmm0, foo
vunpcklps mm0, foo+4

Preferred If Stores Are Close to the Load

vmovd      xmm0, eax
mov        foo+4, edx
vunpcklps  xmm0, xmm0, foo+4

Examples—Large-to-Small Mismatches
Avoid large-to-small mismatches, as shown in the following code:

Avoid (64-bit)

foo DQ ?                   ; Assume foo is 8-byte aligned.
...
mov QWORD PTR foo, rax     ; Store a QWORD to foo.
mov eax, DWORD PTR foo     ; Load a DWORD from foo.
mov edx, DWORD PTR foo+4   ; Load a DWORD from foo+4.

Avoid

movq foo, xmm0
...
mov  eax, foo
mov  edx, foo+4
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Preferred

vmovd   foo, xmm0
vandpd  xmm0, xmm1, xmm0
vmovd   foo+4, xmm0
vandpd  xmm0, xmm2, xmm0
...
mov    eax, foo
mov    edx, foo+4

Preferred If the Contents of XMM0 are No Longer Needed

vmovd      foo, xmm0
vunpckhps  xmm0, xmm0, xmm0
vmovd      foo+4, xmm0
...
mov       eax, foo
mov       edx, foo+4

Preferred If the Stores and Loads are Close Together, Option 1

vmovd   eax, xmm0
vandpd  xmm0, xmm1, xmm0
vmovd   edx, xmm0
vandpd  xmm0, xmm2, xmm0

Preferred If the Stores and Loads are Close Together, Option 2

vmovd      eax, xmm0
vunpckhps  xmm0, xmm0, xmm0
vmovd      edx, xmm0

6.2 Natural Alignment of Data Objects

Optimization
Make sure data objects are naturally aligned. An object is naturally aligned if it is located at an 

address that is a multiple of its size.

Note: If 32-byte or 16-byte loads are performed from addresses which have lesser alignment there is 
one extra cycle of latency with some effects on load throughput in the pipeline.

Locate this type of object At an address evenly divisible by
Word 2
Doubleword 4
Quadword 8
Ten-byte (for example, TBYTE or REAL10) 8 (instead of 10)
Double quadword 16
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Application
This optimization applies to:

• 32-bit software

• 64-bit software

Rationale
In AMD Family 15h and family 15h processors, any load that spans multiple 128 byte aligned blocks 
of memory is defined as a misaligned load. Misaligned loads are further classified as follows:

• Misaligned Load: A generic 128b misaligned load

• Cache Line Crosser: A misaligned load that spans two cache lines

• Page Crosser: A misaligned load that spans multiple pages

A misaligned store or load operation suffers a minimum one-cycle penalty in the processor’s load-
store pipeline. Also, using misaligned loads and stores increase the likelihood of encountering a store-
to-load forwarding pitfall, especially when operating in long mode (64-bit software). (For a more 
detailed discussion of store-to-load forwarding issues, see “Store-to-Load Forwarding Restrictions” 
on page 98.)

In addition, if the Alignment Mask bit is set in Control Register 0 (CR0), an unaligned memory 
reference may cause an alignment check exception. For more information on this topic, see the 
AMD64 Architecture Programmer’s Manual, Volume 2, order# 24593.

6.3 Store-to-Load Forwarding Restrictions

Optimization
Maintain consistent operand sizes across all loads and stores. Preferably use doubleword, quadword, 
or 128-bit operand sizes. Avoid store-to-load forwarding pitfalls, such as

• narrow-to-wide forwarding cases.

• mismatched addresses for stores and loads.
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Application
This optimization applies to:

• 32-bit software

• 64-bit software

Rationale
Store-to-load forwarding refers to the process of a load reading (forwarding) data from the store 
buffer. Where this is possible, it can lead to a performance improvement because the load does not 
have to wait for the recently written (stored) data to be written to cache and then read back out again. 

There are circumstances under which AMD Family 15h processor load-store (LS) architecture does 
not allow data to be read from a store in the store buffer. Store forwarding only occurs when the load 
virtual address exactly matches the store virtual address and the store size is greater than or equal to 
the load size. In such cases, it is impossible to load the needed data into a register until the store has 
retired out of the store buffer and written to the data cache. A store-buffer entry cannot retire and 
write to the data cache until every instruction before the store has completed and retired from the 
reorder buffer. The implication of this restriction is that all instructions in the reorder buffer, up to and 
including the store, must complete and retire out of the reorder buffer before the load can complete. 
Effectively, the load has a false dependency on every instruction up to the store.

Due to the significant depth of the LS buffer of AMD Family 15h processors, any load that is 
dependent on a store that cannot bypass data through the LS buffer may experience significant delays 
of up to tens of clock cycles, where the exact delay is a function of pipeline conditions.

The following sections describe store-to-load forwarding examples.

Store-to-Load Forwarding Pitfalls—True Dependencies
A load is not allowed to read data from the store-buffer entry if any of the following conditions occur:

• The start address of the load does not match the start address of the store.

• The load operand size is greater than the store operand size.

• Either the load or the store is misaligned. See Section 6.2, “Natural Alignment of Data Objects” 
on page 97 for additional information on alignment recommendations.

• A high byte (or word) store and a low byte (or word) store in the same aligned doubleword are 
followed by either a low or high byte (or word) load.

The following sections describe common-case scenarios to avoid. In these scenarios, a load has a true 
dependency on an LS2-buffered store, but cannot read (forward) data from a store-buffer entry.
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Load Operand Size Greater than the Store Operand Size
If the following conditions are present, there is a narrow-to-wide store-buffer data-forwarding 
restriction:

• The operand size of the store data is smaller than the operand size of the load data.

• The range of addresses spanned by the store data covers some subrange of the addresses spanned 
by the load data.

Examples

Avoid

mov rax, 10h
vmovsd QWORD PTR [rax], xmm0   ; Quadword store 
vmovsd QWORD PTR [rax+8], xmm1 ; Quadword store 

... 

vmovapd xmm2, XMMWORD PTR [rax] ; Octal Word load--cannot forward upper and
                                ; lower Quadwords from store buffer. 

Preferred 

mov rax, 10h 

vmovapd xmm3, xmm0     ; Assumes XMM3 is available and will not be detrimental
                       ; to register pressure 

vshufpd xmm3, xmm3, xmm1, 0 
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vmovapd xmmword ptr [rax], xmm3 

.... 

vmovapd xmm2, xmmword ptr [rax]    ; Octal Word load--can forward from 
                                   ; Octal word store from store buffer 

Misaligned Store-Buffer Data-Forwarding Restriction
If the following condition is present, there is a misaligned store-buffer data-forwarding restriction:

• The store or load address is misaligned. For example, a quadword store is not aligned to a 
quadword boundary.

A common case of misaligned store-data forwarding involves the passing of misaligned quadword 
floating-point data on the doubleword-aligned integer stack. Avoid the type of code shown in the 
following example:

mov  rsp, 24h
vmovups QWORD PTR [rsp]         , xmm0   ; RSP = 24h
...                             ; Store occurs to quadword misaligned address.
vmovups xmm1, QWORD PTR [rsp]   ; Quadword load cannot forward from quadword
                                ; misaligned ‘FSTP[ESP]’ store operation.

Summary of Store-to-Load-Forwarding Pitfalls to Avoid
The following list summarizes the situations that require care to handle store-to-load forwarding 
cases:

• Avoid narrow-to-wide forwarding cases.

• Avoid mismatched addresses for stores and loads.

• Avoid misaligned data references.

• When using word or byte stores, avoid having two or more distinct stores to distinct bytes (or 
words) inside the same aligned doubleword memory location followed by a subsequent load from 
one of the same byte (or word) locations.

• Maintain consistent operand sizes across all loads and stores. Preferably use doubleword, 
quadword, or 128-bit operand sizes.
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6.4 Good Practices for Avoiding False Store-to-Load 
Forwarding

Optimization
Choose linear addresses for the source and destination operands of REP MOVS/CMPS that are not an 
exact multiple of 4K pages away from each other.

Application
This optimization applies to: 

• 32-bit software

• 64-bit software

Rationale
As mentioned in the previous section, store-to-load forwarding occurs when the store address 
matches the load address. This address match is split into two stages. In the first stage, bits 4:11 of the 
store and the load addresses are matched. In addition the double word mask of the store and load 
addresses is matched. The double word mask indicates whether the load/store pair is accessing the 
same double word in a 16-byte bank. If both these parameters match, then a store-to-load forward is 
initiated. In the second stage the remaining bits 12:47 of the store and load addresses is matched. If 
the remaining bits match, then the STLF is considered as a true STLF and is allowed to proceed. 
Otherwise it is considered as a false STLF and the load is cancelled and retried. 

The previous section deals with true STLF and describes the practices to follow to promote it. This 
section deals with the cases of false STLF and what the developer needs to do to avoid these from 
occurring in the first place, thereby avoiding the later penalty of STLF cancellation.

Example
For REP MOVS/CMPS, choose linear addresses that avoid conflicts.

REP stands for the repeat function. This function repeats or iterates its associated string instruction as 
many times as specified in the counter register (rCX) and terminates the repetition when the value in 
rCX reaches 0. For example, REP MOVS moves a string from a source address to a destination 
address a specified number of times. In the event that bits 4:11 of the linear address of the store 
address in the first iteration match the load address in the second iteration, a store-to-load forward 
may be initiated.

When the destination address of an iteration is located at an exact multiple of 4K pages away from the 
source address of the next iteration, an STLF will be initiated. When the remaining address bits are 
found to be mismatched later, the STLF is cancelled and the load has to be retried.  This results in a 
significant penalty of wasted DC bandwidth due to having to retry loads multiple times.
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For example, a REP MOVS instruction suffers from these inefficiencies if RSI is 0x1ffeee000000 and 
RDI is 0x1ffeee401000.

6.5 Prefetch and Streaming Instructions

Optimization
Where appropriate, use one of the prefetch instructions to increase the effective bandwidth of 

AMD Family 15h processors.

Application
This optimization applies to:

• 32-bit software

• 64-bit software

Rationale
Prefetch instructions take advantage of the high bus bandwidth of AMD Family 15h processors to 
hide latencies when fetching data from system memory. A prefetch instruction initiates a read request 
of a specified address and reads the entire cache line that contains that address.

AMD Family 15h processors perform three types of prefetches:

The prefetch instructions can be used anywhere, in any type of code. The use of prefetch instructions 
is not affected by the values of Control Register 0 (CR0) bits, such as CR0.EM and CR0.TS.

Prefetching versus Preloading

In code that makes irregular memory accesses rather than sequential accesses, an ordinary MOV 
instruction is the best way to load data. But in situations where sequential addresses are read, prefetch 

Prefetch type Description
Load Reads the data into the L1 data cache; the data is later evicted to the L2 cache. The 

following instructions perform load prefetches: PREFETCH, PREFETCHT0, 
PREFETCHT1, and PREFETCHT2.

Store Reads the data into the L1 data cache and marks the data as modified; the data is 
later evicted to the L2 cache. The PREFETCHW instruction performs a store prefetch.

Nontemporal The PREFETCHNTA instruction performs a nontemporal prefetch. The data is read  
into the L1 data cache; to avoid cache pollution, when a PREFETCHNTA misses in 
the L2 cache and reads from memory, the data is never evicted to the L2 cache. 
When a PREFETCHNTA hits in the L2 cache, the data is evicted back to the L2 
cache.
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instructions can improve performance. Prefetch instructions only update the L1 data cache and do not 
update an architectural register.

Unit-Stride Access

Large data sets typically require unit-stride access to ensure that all data pulled in by a prefetch 
instruction are actually used. Large data sets make use of all data that are read from memory, rather 
than using only a sparse subset of the memory. If necessary, you should reorganize algorithms or data 
structures to allow unit-stride access. For a definition of unit-stride access, see “Definitions” on 
page 110.

Hardware Prefetcher Optimizations

In AMD Family 15h processors, the data hardware prefetches data into either the L1 or L2 cache. The 
L1 hardware prefetcher in AMD Family 15h processors is a stride prefetcher that is triggered by L1 
cache misses and received training data from the L2 prefetcher. Stride of up to ±504 bytes accessed 
from the same RIP will be detected and this data is used to start the stride prefetcher. Stride 
prefetching will propagate as long as requests continue at the same stride, or until a page boundary is 
encountered. Up to 12 different stride patterns can be active at one time. 

Region Prefetcher loads into L2

The L2 prefetcher provides high-performance prefetch for both strided and non-strided access 
patterns. The L2 strided prefetcher works in cooperation with the L1 strided prefetcher to prefetch a 
large number of streams and to prefetch further ahead in the data stream. The L2 non-strided 
prefetcher captures correlated data accesses that don’t have fixed stride relationship.  The L2 
prefetcher can capture up to 4096 independent streams or correlated data patterns. Loads, stores, L1 
hardware prefetch, and software prefetch other than NT prefetches or loads, to/from addresses 
currently not cached, are all tracked by the L2 prefetchers.

Contraindications for Prefetching
There are situations in which careless software prefetching can hurt performance.

• Thrashing—This is potentially the worst scenario. Thrashing occurs if more than two arrays are  
prefetched in parallel and the addresses are separated by whole multiples of 4K bytes (the 16-KB 
4-way L1 cache size divided by the associativity). When this occurs, some of the prefetched data 
evicts other prefetched data before it can be used. This is inefficient even without prefetching—
which simply makes the situation worse. Thrashing can be particularly bad if PREFETCHNTA is 
used.

• Cache pollution—This is a problem when the code prefetches a large amount of unused data, such 
as when the data is used conditionally or consists of many short sequences and the prefetches 
extend beyond the ends of the ranges of addresses that are actually desired.

• Prefetch from unmapped pages—This occurs when there is a prefetch in a loop, and the prefetch 
address is simply the data address plus some offset. Normally you should make the offset large 
enough so the data is fetched before the loop catches up to it, but this means there will be some 
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over-run at the end of the loop. An over-run in an unmapped page can result in a significant delay. 
This is not so important if the over-run falls at the end of a very long stream of useful data.

In general, prefetching is useful where the program is neither totally memory-bound nor totally 
compute-bound, and the pattern of data access is fairly predictable within the code. The ideal fetch-
ahead distance depends on the code, on the DRAM latency, and on how the data is laid out in address 
space.

The following table summarizes which prefetch instructions to use based on data size and data type.

For guidance on when to use software prefetching for memory and string routines, see Section 6.8, 
“Memory and String Routines’ on page 113.

PREFETCH versus PREFETCHNTA/T0/T1/T2

PREFETCHNTA, PREFETCHT0, PREFETCHT1, and PREFETCHT2 are SIMD instructions and 
are processor-implementation dependent. For AMD Family 15h processors, data that is prefetched 
with the PREFETCHNTA instruction is not placed into the L2 cache when it is evicted unless it was 
originally in L2 when prefetched. 

Table 3. Prefetching Guidelines

Data Less Than
½ L1 Size

Less Than ½ L2 Size or Unknown Size Greater Than
½ L2 SizeReused Not Reused

Read-Only PREFETCH1 or PREFETCHNTA PREFETCH1 PREFETCHNTA
5

PREFETCHNTA5

Sequential
Read-Only

Prefetcher + PREFETCH1,3 Prefetcher + PREFETCH1,3 PREFETCHT0 PREFETCHNTA

Read-Write PREFETCH PREFETCH PREFETCH PREFETCH

Sequential 
Read-Write

PREFETCH PREFETCH PREFETCH PREFETCH

Write-Only PREFETCH PREFETCH MOVNT2,4 MOVNT2,4

Sequential
Write-Only

Prefetcher + PREFETCH Prefetcher + PREFETCH MOVNT2,4,6 MOVNT2,4,6

Notes:
1. PREFETCH is a place-holder for any of PREFETCH, PREFETCHT0, PREFETCHT1 or PREFETCHT2.
2. MOVNT is a place-holder for any of MOVNTI, MOVNTQ, MOVNTDQ, MOVNTPD, MOVNTPS, MOVNTSD, 

MOVNTSS, MASKMOVQ or MASKMOVDQU.
3. Use PREFETCH1 twice before iterations to jump-start the prefetcher, if advantageous. Otherwise, do not use 

PREFETCH1.
4. If no suitable MOVNT2 instruction is available, use PREFETCHNTA.
5. Use MOVNTDQA. NT loads, if executed ahead of prefetch, guarantee data comes into core with NT type, and is 

written only to L1 data cache, not  to L2  cache.
6. Use NT store, which writes directly to memory.  Normal store would write line to L2. L2 does not find that line 

and then must fetch it from memory.
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PREFETCHNTA is intended for non-temporal data that will not be needed again soon.  
PREFETCHNTA should also be used when reading arrays that are so large that they are larger than 
the L2 cache.  Because of their size, such large arrays will not be available in L2 even if they are 
needed again, and by feeding them through the L2 cache, other possibly useful data will also be 
evicted from L2.

Note: The sizes of the L1 and L2 caches of the processor can be determined by using the CPUID 
instruction.

Note: Data cache misses on PREFETCHNTA trigger the hardware prefetcher on AMD Family 15h 
processors, but those prefetch streams are marked “NT”, so that they are not evicted back to 
L2 or L3.

Note: PREFETCHNTA should not be used for large arrays that are only being written, not read.  In 
such cases, write-combining stores should be used. (See “Write-Combining” on page 111, 
Appendix A, “Implementation of Write-Combining.”, and “Write-Combining” in the AMD64 
Architecture Programmer’s Manual, Volume 2, order# 24593.)

AMD Family 15h processors implement the PREFETCHT0, PREFETCHT1, and PREFETCHT2 
instructions in exactly the same way as the PREFETCH instruction. That is, the data is brought into 
the L1 data cache. This functionality could change in future implementations of the AMD Family 15h 
processor.

Note: In cases where L2 utilization is saturated, use of PREFETCHT0 at distances of 768 bytes or 
12 lines away in Data can help load/store performance.

 Use of Streaming Instructions

Use streaming instructions instead of PREFETCHW in situations where all of the following 
conditions are true:

• The code will overwrite one or more complete cache lines with new data.

• The new data will not be used again soon.

Streaming instructions include the non-temporal stores MOVNTDQ, MOVNTI, MOVNTPS, 
MOVNTPD, MOVNTSD,  MOVNTSS and the MMX instruction MOVNTQ. However, unlike 
regular stores, non-temporal stores are weakly ordered relative to other loads and stores. If strong 
ordering of stores is required, an SFENCE instruction should be used between the non-temporal 
stores and any succeeding normal stores. See Section 11.5, “Memory Barrier Operations’ on page 209 
for further recommendations on memory barrier instructions.

Streaming instructions can dramatically improve memory-write performance. They write data 
directly to memory through write-combining buffers, bypassing the cache. This is faster than 
PREFETCHW because data does not need to be initially read from memory to fill the cache lines, 
only to be completely overwritten shortly thereafter. The new data is simply written to memory, 
replacing the old data in memory, so no memory read is performed.
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One application where streaming is useful, often in conjunction with prefetch instructions, is in 
copying large blocks of memory.

Note: The streaming instructions are not recommended or necessary for write-combined memory 
regions since the processor automatically combines writes for those regions. Write-combine 
memory types are indicated through the MTRRs and the page-attribute table (PAT).

Note: For best performance, do not mix streaming instructions on a cache line with non-streaming 
store instructions.

The following performance caveats apply when using streaming stores on AMD Family 15h cores.

• When writing out a single stream of data sequentially, performance of AMD Family 15h 
processors is comparable to previous generations of AMD processors.

• When writing out two streams of data, AMD Family 15h version 1 processors can be up to three 
times slower than previous-generation AMD processors.  AMD Family 15h  version 2 processor 
performance is approximately 1.5 times slower than previous AMD processors.

• When writing out four non-temporal streams, AMD Family 15h  version 1 can be up to three 
times slower than previous AMD processors.  AMD Family 15h  version 2 processor performance 
is comparable to previous AMD processors. 

• Using non-temporal stores but not writing out an entire cacheline may cause performance to be up 
to six times slower than previous AMD processors.

For more information on write-combining, see Appendix A, “Implementation of Write-Combining.”

Multiple Prefetches

Programmers can initiate multiple outstanding prefetches on AMD Family 15h processors. These 
processors can have a theoretical maximum of 16 outstanding cache misses, including prefetches. 
When all resources are filled by various memory read requests, the processor waits until resources 
become free before processing the next request. Multiple prefetch requests are essentially handled in 
order, prefetching data in the order that it is needed.

The following example shows how to initiate multiple prefetches when traversing more than one 
array.

Example—Multiple Prefetches

; TO ASSEMBLE INTO *.obj DO THE FOLLOWING:
; ml64.exe -c array_multiply_prf.asm
;
; Original C code:
;
; double *array_multiply_prf(double *a, double *b, double *c, int n)
; {
;   int i;
;   for (i = 0; i < n; i++) {
;     a[i] = b[i] * c[i];
;   }
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;
;   return a;
; }
;
TEXT SEGMENT page 'CODE'
PUBLIC array_multiply_prefetch
array_multiply_prefetch: proc frame
;
;==============================================================================
; Parameters passed into routine according to the Microsoft AMD64 ABI:
; rcx = a
; rdx = b
; r8 =  c
; r9 =  n
;==============================================================================
      xor rbx,rbx
ALIGN 32    ; Align address of code loop to a 32-byte boundary.
loop:
      prefetchw [rcx+rbx*8+320]                         ; Five cache lines ahead
      prefetcht0 [rdx+rbx*8+320]                        ; Five cache lines ahead
      prefetcht0 [r8+rbx*8+320]                         ; Five cache lines ahead
      vmovapd YMMWORD PTR [rdx+rbx*8],ymm0              ; b[i,i+1,i+2,i+3]
      vmulpd YMMWORD PTR [r8+rbx*8],ymm0,ymm0           ;
      ; b[i,i+1,i+2,i+3] * c[i,i+1,i+2,i+3]
      vmovapd xmm0,XMMWORD PTR [rcx+rdx*8]              ;
      ; a[i,i+1,i+2,i+3] = b[i,i+1,i+2,i+3] * c[i,i+1,i+2,i+3]
      vextractf128 ymm0, XMMWORD PTR [rcx+rbx*8+16],1   ;
      vmovapd YMMWORD PTR [rdx+rbx*8+32],ymm0           ; b[i+4,i+5,i+6,i+7]
      vmulpd YMMWORD PTR [r8+rbx*8+32],ymm0,ymm0        ;
      ; b[i+4,i+5,i+6,i+7] * c[i+4,i+5,i+6,i+7]
      vmovapd xmm0,XMMWORD PTR [rcx+rdx*8+32]           ;
      ; a[i+4,i+5,i+6,i+7] = b[i+4,i+5,i+6,i+7] * c[i+4,i+5,i+6,i+7]
      vextractf128 ymm0, XMMWORD PTR [rcx+rbx*8+48],1   ;
      add 8, rbx                                        ; Compute next 8 products
      sub 8, r9                                         ;
      jnz loop                                          ; until none left.

The following optimization rules are applied to this example: 

• Partially unroll loops to ensure that the data stride per loop iteration is equal to the length of a 
cache line. This avoids overlapping PREFETCH instructions and makes optimal use of the 
available number of outstanding prefetches.

• Because the array array_a is written rather than read, use PREFETCHW instead of PREFETCH 
to avoid overhead for switching cache lines to the correct state. 

• Avoid the use of a microcoded 256-bit store by using vextractf128 to store the upper half of the 
result operand.

Determining Prefetch Distance

When determining how far ahead to prefetch, the basic guideline is to initiate the prefetch early 
enough so that the data is in the cache by the time it is needed.
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To determine the optimal prefetch distance, use empirical benchmarking when possible. Prefetching 
four to eight cache lines ahead (256 to 512 bytes) is a good starting point. Trying to prefetch either too 
far ahead or too soon impairs performance.

Memory-Limited versus Processor-Limited Code

Software prefetching can help to hide the memory latency, but it cannot increase the total memory 
bandwidth. Many loops are limited by memory bandwidth rather than processor speed, as shown in 
Figure 5. In these cases, the best that software prefetching can do is to ensure that enough memory 
requests are “in flight” to keep the memory system busy all of the time. AMD Family 15h processors 
support a maximum of eight concurrent memory requests to different cache lines. Multiple requests to 
the same cache line count as only one towards this limit of eight.

Figure 5. Memory-Limited Code

Code that performs many computations on each cache line is limited by processor speed rather than 
memory bandwidth, as shown in Figure 6. In this case, the goal of software prefetching is just to 
ensure that the memory data is available when the processor needs it. As the processor speed 
increases, optimal prefetch distance increases until memory bandwidth becomes the limiting factor.
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For an example of how to use software prefetching in processor-limited code, see “Prefetch and 

Streaming Instructions” on page 103.

Figure 6. Processor-Limited Code

Definitions

Unit-stride access refers to a memory access pattern where consecutive memory accesses are made to 
consecutive array elements, in ascending or descending order. If the arrays are made of elemental 
types, then they imply adjacent memory locations as well. For example:

char j, k[MAX];
for (i = 0; i < MAX; i++) {
...
j += k[i];   // Every byte is used.
...
}  
double x, y[MAX];
for (i = 0; i < MAX; i++) {
...
x += y[i];   // Every byte is used.
...
}

Exception to Unit Stride

The unit-stride concept works well when stepping through arrays of elementary data types. In some 
instances, unit stride alone may not be sufficient to determine how to use the PREFETCH instruction 
properly. For example, assume that there is a vertex structure of 256 bytes and the code steps through 
the vertices in unit stride, but using only the x, y, z, w components, each being of type float (for 
example, the first 16 bytes of each vertex). In this case, the prefetch distance obviously should be 
some function of the data size structure (for a properly chosen n):
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prefetch [rax+n*structure_size]
...
add      rax, structure_size

You should experiment to find the optimal prefetch distance; there is no formula that works for all 
situations.

Data Stride per Loop Iteration

Assuming unit-stride access to a single array, the data stride of a loop (the loop stride) refers to the 
number of bytes accessed in the array per loop iteration. For example:

   vxorpd
add_loop:
   vaddsd xmm1, xmm1, QWORD PTR [rbx*8+base_address]
   dec  rbx
   jnz  add_loop

The data stride of the above loop is eight bytes. In general, for optimal use of prefetching, the data 
stride per iteration is the length of a cache line (64 bytes in AMD Family 15h processors). If the loop 
stride is smaller, unroll the loop enough to use a whole cache line of data per iteration. However, 
unrolling the loop may not be feasible if the original loop stride is very small (for example, only two 
bytes).

Prefetch at Least 64 Bytes Away from Surrounding Stores

The prefetch instructions can be affected by false dependencies on stores. If there is a store to an 
address that matches a request, that request (the prefetch instruction) may be blocked until the store is 
written to the cache. Therefore, code should prefetch data that is located at least 64 bytes away from 
any surrounding store’s data address.

6.6 Write-Combining

Optimization
Operating-system, device-driver, and BIOS programmers should take advantage of the write-

combining capabilities of AMD Family 15h processors.

For details, see Appendix A, “Implementation of Write-Combining.” For more information on write-
combining, see “Write-Combining” in the AMD64 Architecture Programmer’s Manual, Volume 2, 
order# 24593.

Application
This optimization applies to:

• 32-bit software
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• 64-bit software

Rationale
In order to improve system performance, AMD Family 15h processors aggressively combine 
multiple memory-write cycles (of any data size) that address locations within a 64-byte cache-line-
aligned write buffer.

6.7 Placing Code and Data in the Same 64-Byte Cache 
Line

Optimization
Avoid placing code and data together within a cache line, especially if the data becomes 

modified.

Application
This optimization applies to:

• 32-bit software

• 64-bit software

Rationale
Sharing code and data in the same 64-byte cache line may cause the L1 caches to thrash 
(unnecessarily cast out code or data) in order to maintain coherency between the separate instruction 
and data caches. AMD Family 15h processors have a cache-line size of 64 bytes. 

For example, consider the case of a memory-indirect JMP instruction that accesses data in a jump 
table that resides in the same 64-byte cache line as the JMP instruction. This mixing of code and data 
in the same cache line degrades performance.

Do not place critical code at the border between 32-byte-aligned code segments and data segments. 
Code at the beginning or end of a data segment should be executed as infrequently as possible or 
padded.

In summary, avoid self-modifying code and storing data in code segments.
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6.8 Memory and String Routines

Optimization
Use the memory and string routines provided in the run-time libraries, rather than creating new 

custom versions.

Application
This optimization applies to:

• 32-bit software

• 64-bit software

Rationale
To achieve optimal performance, it is necessary to use different memory and string manipulation 
algorithms to handle different block sizes and alignments. These algorithms must consider system 
configuration as well as the cache and memory subsystems.

The run-time libraries have optimized routines that combine several algorithms. However, if it is 
necessary to create fast, specific-purpose memory or string routines or to build routines that 
complement the run-time library, the following pseudo-code can be used as a guide to write new 
routines combining different algorithms:

if (block size is less than 8 bytes for 32 bits or less than 16 bytes for 64 
bits):
  perform operations in byte, word and doubleword for 32 bits and additionally
  in quad-word for 64 bits, starting with the widest operation;

align the destination or a source block to the natural word-size;

if (block size is at least 16 bytes, and is in increments of 16 bytes in size,
  perform operations in the natural word-size in an unrolled loop, 
  one cache-line size per iteration using AVX/SSE instructions. Repeat as above
  for fixup segments smaller than 16 bytes in size.

This pseudo-code makes the following assumptions: 

• Some thresholds are specified as half of a cache level because some routines have either two 
sources (e.g., strcmp( )) or a source and a destination (e.g., memcpy( )). A routine that has a 
single source or destination (e.g., strlen( ) or memset( )), could use all of a cache level for its 
work. However, while there is usually no drawback in using all of the L1 or even L2 caches, using 
all of the L3 cache can hurt the performance of other processes on a system. Using only up to a 
core's share of the L3 cache (e.g., on a four-core processor, up to 1/4 of the L3 cache) is 
recommended.

• The natural word-size is a doubleword for 32 bits and a quadword for 64 bits.
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• The block size thresholds between one algorithm and the other assume that the block size is 
unknown at the beginning. Therefore, if the block size is known beforehand to be within a certain 
range, experimentation may lead to different thresholds.

• Memory routines are almost completely memory bandwidth-limited; operations within loops 
being limited to data movement and pointers and counter maintenance. However, string routines 
may additionally require some computation to find the terminating null character or to ignore 
character case; this computation can dominate memory bandwidth. Therefore, some string 
routines may require many fewer algorithms than memory routines.

• Each core on a processor has access to exclusive L1 data cache and both cores on a compute unit 
hare the L2 data cache and to a shared L3 cache.

• Instead of using the L2 cache-size as a threshold, particular needs and experimentation may favor 
using the L3 cache-size as a threshold.

• When software prefetching is used, the distance is typically eight cache lines, but experimentation 
may lead to a different distance.

Refer to Section 2.5, “AMD Family 15h Processor Cache Operations” on page 32 for a list and 
descriptions of cache operations.

See also Section 6.5, “Prefetch and Streaming Instructions” on page 103, and Section 9.3, “Repeated 
String Instructions” on page 146.

6.9 Stack Considerations

Optimization
Make sure the stack is suitably aligned for the local variable with the largest base type. Then, using 
the technique described in Section 3.16, “Sorting and Padding C and C++ Structures’ on page 63, all 
variables can be properly aligned with no padding.

Application
This optimization applies to:

• 32-bit software

• 64-bit software

Aligning the Stack for Local Variables

A calling convention requires a certain stack alignment on function entry. For example, the Win32 
32-bit ABI arranges for 32-bit stack alignment.

If a function has no local variables with a base type larger than the guaranteed stack alignment, no 
further work is necessary. If the function has local variables whose base type is larger than a 
doubleword, insert additional code to ensure proper alignment of the stack. For example, SIMD 
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packed data requires 16-byte alignment. The following code achieves double quadword (16-byte) 
alignment:

prologue:
   push rbp
   mov  rbp, rsp
   sub  rsp, SIZE_OF_LOCALS   ; Size of local variables
   and  rsp, -16
   ...                        ; Push registers that need to be preserved.

epilogue:                     ; Pop register that needed to be preserved.
   leave
   ret

For functions which have local variables that need 8-byte alignment, change the above code to use:

   and rsp, -8

With this technique, function arguments can be accessed through EBP, and local variables can be 
accessed through ESP. Save and restore EBP between the prologue and the epilogue to keep it free for 
general use.

6.10 Cache Issues When Writing Instruction Bytes to 
Memory

Optimization 
When writing data consisting of instructions for future execution to memory use streaming store 
(write-combining) instructions such as MOVNTDQ and MOVNTI. 

Application 
This optimization applies to: 

• 32-bit software

• 64-bit software

Rationale 
This optimization pertains to software that writes executable instructions to memory for subsequent  
execution, such as might be done by a just-in-time compiler. If normal store instructions are used to 
write the code to memory, then the L2 cache lines will be in a modified state. When the processor 
eventually tries to execute the code, it will miss in the instruction cache. Because the instruction 
cache cannot contain cache lines that are in a modified state, the data must be flushed to memory 
before it can be fetched into the instruction cache.  This unnecessarily evicts possibly useful 
information from the caches. By using write-combining instructions, the contents of the cache is 
preserved with no performance penalty, and this possibly provides a performance improvement.
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6.11 Interleave Loads and Stores

Optimization
When loading and storing data as in a copy routine, the organization of the sequence of loads and 
stores can affect performance.

Application
This optimization applies to:

• 32-bit software

• 64-bit software

Rationale
When using SIMD instructions to perform loads and stores, it is best to interleave them in the follow-
ing pattern—Load, Store, Load, Store, Load, Store, etc. This enables the processor to maximize the 
load/store bandwidth.

Example
The following example illustrates a sequence of 128-bit loads and stores:

vmovdqa     xmm0,[rdx+r8*8]           ; Load
vmovntdq    [rcx+r8*8],xmm0           ; Store
vmovdqa     xmm1,[rdx+r8*8+16]        ; Load
vmovntdq    [rcx+r8*8+16],xmm1        ; Store

6.12 L1I Address Aliasing Conflicts
On Family 15h parts, instruction caches will invalidate aliases to a physical page that differ in virtual 
addresses bits 14:12. When one physical address is mapped by two or more virtual addresses that 
differ in this way, a performance decrease may be observed. This problem can be observed primarily 
in Linux and other Operating Systems which enable ASLR (Address Space Layout Randomization) 
by default.

Essentially this problem can exist in any image or library with a physical page that is mapped to 
different virtual/logical addresses. This problem is only seen on processes that run on the same 
compute unit.

Problem areas
• Code that is located in dynamic libraries.
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• Binaries compiled with Position Independent Code(PIC) or Position Independent Executables 
(PIE).

• Virtualization

• In virtualization scenarios if the hypervisor merges identical physical pages of different guests 
(same page merging)

Solutions
• Restrict bits 14:12 of the virtual address to not participate in the Address Space Randomization by 

keeping them identical across virtual mappings system wide.

• Fill bits 14:12 with a bit pattern which is equal for each mapping of a single library.

• Prelink libraries, partially defeating the problem in the Address Space Randomization.

• Disable ASLR. Note that this decision has security ramifications.

• Particularly, disable same page merging for specific guests, which one cannot fix or update.

Note: Large page support is unaffected by this problem. The above notes apply only to Linux 
Operating Systems.
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Chapter 7 Branch Optimizations

The optimizations in this chapter help improve branch prediction and minimize branch penalties.

This chapter covers the following topics:

7.1 Instruction Fetch
As described in Chapter 2,  “Microarchitecture of AMD Family 15h Processors” on page 29,  each 
pair of integer execution units and one floating-point unit shares one instruction fetch, branch 
predictor, decode and dispatch unit, also known as the shared frontend. Code layout and alignment 
optimizations relative to these shared resources can improve performance.  The function of this 
shared front end and related code optimizations are discussed below.

7.1.1 Instruction Fetch

Optimization 
When possible, align branch targets to a 32-byte boundary and limit the number of branches in a 32-
byte boundary to one.

Rationale
The shared front end carries out an instruction fetch in a 32-byte window. Therefore, it is 
recommended that tight loops not cross 32-byte boundaries, when possible. The use of NOP 
instructions or the assembler .align 32 directive are recommended to achieve this alignment. The 
NOPs utilized should have no more than three prefix bytes prefixed to the NOP opcode. If the NOP 
has more than three prefix bytes, decode throughput for this instruction is reduced by more than an 
order of magnitude. Furthermore, to reduce branch-not-taken bubbles, it is also recommended to limit 
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branches to one per 32-byte fetch window.  This recommendation is more relevant in the case of 
conditional branches.

7.1.2 Reduce Instruction Size

Optimization
Reduce the size of instructions when possible.

Rationale
Using smaller instruction sizes improves instruction fetch throughput.  Specific examples include the 
following:

• In SIMD code, use the single-precision (PS) form of instructions instead of the double-precision 
(PD) form.  For example, for register to register moves, MOVAPS achieves the same result as 
MOVAPD, but uses one less byte to encode the instruction and has no prefix byte.  Other 
examples in which single-precision forms can be substituted for double-precision forms include 
MOVUPS, MOVNTPS, XORPS, ORPS, ANDPS, and SHUFPS.

• Reduce the size of displacements to a single byte by using  complex addressing modes where 
possible.

• When shuffling the contents of a single register, use the PSHUFD, PSHUFHW, and PSHUFLW 
instructions instead of other shuffles.  These instructions do not use the source register as a 
destination, and thus can avoid the additional micro-op required to copy the register contents.

7.2 Branch Fusion

Optimization
Place a comparison or test instruction and its associated branch instruction sequentially adjacent in 
the code.

Rationale
AMD Family 15 processors introduce a new feature where, in some cases, a comparison or test 
instruction and its associated branch instruction can be "fused" into a single micro-operation.  In order 
to take advantage of this optimization, the comparison and associated branch instructions must be 
adjacent in the code with no intervening instructions between them.  This branch fusion will not occur 
if the comparison/test instruction is the fourth and final instruction of a dispatch group.  However, 
once a comparison and branch are fused, it only counts as a single micro-operation in the current 
dispatch group.  
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In general, associated comparison associated and branch instructions should be adjacent in the code.  
However, branch fusion is not possible unless the branch target address is RIP relative.  Branch fusion 
will not occur if the comparison instruction uses a RIP-relative addressing mode, the comparison and 
jump instructions both have immediate operands and displacements, or either instruction uses SIB 
address mode and utilizes a base which is not specified by a register but by an immediate value.  

7.3 Branches That Depend on Random Data

Optimization
Avoid conditional branches that depend on random data, as these branches are difficult to 

predict.

Application
This optimization applies to:

• 32-bit software

• 64-bit software

Rationale
Suppose a piece of code receives a random stream of characters “A” through “Z” and branches if the 
character is before “M” in the collating sequence. Data-dependent branches acting upon basically 
random data cause the branch-prediction logic to mispredict the branch about 50% of the time.

If possible, design branch-free alternative code sequences that result in shorter average execution 
time. This technique is especially important if the branch body is small. 

Examples
The following examples illustrate this concept using the CMOVxx instruction.

Signed Integer ABS Function (x = labs(x))

mov   ecx, [x]   ; Load value.
mov   ebx, ecx   ; Save value.
neg   ecx        ; Negate value.
cmovs ecx, ebx   ; If negated value is negative, select value.
mov   [x], ecx   ; Save labs result.

Unsigned Integer min Function (z = x < y ? x : y)

mov    eax, [x]   ; Load x value.
mov    ebx, [y]   ; Load y value.
cmp    eax, ebx   ; EBX <= EAX ? CF = 0 : CF = 1
cmovnc eax, ebx   ; EAX = (EBX <= EAX) ? EBX : EAX
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mov    [z], eax   ; Save min(X,Y).

Conditional Write
// C code:

int a, b, i, dummy, c[BUFSIZE];

if (a < b) {
   c[i++] = a;
}

;--------------
; Assembly code:

lea esi, [dummy]   ; &dummy
xor ecx, ecx       ; i = 0
...
lea    edi, [c+ecx*4]   ; &c[i]
lea    edx, [ecx+1]     ; i++
cmp    eax, ebx         ; a < b ?
cmovge edi, esi         ; ptr = (a >= b) ? &dummy : &c[i]
cmovl  ecx, edx         ; a < b ? i : i + 1
mov    [edi], eax       ; *ptr = a

7.4 Pairing CALL and RETURN

Optimization
For each CALL to a subroutine, use a RET instruction to return to the caller.

Application
This optimization applies to:

• 32-bit software

• 64-bit software

Rationale
As explained in section 2.6, “Branch-Prediction” on page 34, the Return Address Stack (RAS) can 
predict a limited number of branches by the RET instruction. CALL instructions push the next rIP on 
the return address stack. The corresponding RET instruction uses this address for its target prediction. 
If the RAS overflows, then the oldest return address is lost and the corresponding RET will likely be 
mispredicted, considerably lengthening the latency of the RET instruction.

When a CALL instruction is not paired with a RET instruction, the RAS can get out of sync, 
lengthening the latency of other RET instructions whose return addresses remain in the RAS. 
However, there is an important special case, shown in the following example, commonly used to get 
the value in the EIP register into a general-purpose register in 32-bit software:
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    CALL 0h
    POP  EAX   ; EAX contains the value of EIP

When the CALL instruction is used with a displacement of zero, it is recognized and treated specially; 
the RAS remains consistent even if there is not a corresponding RET instruction.

To get the value in the RIP register into a general-purpose register in 64-bit software, you can use 
RIP-relative addressing, as in the following example:

LEA  RAX, [RIP+0] ; RAX contains the value of RIP.
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7.5 Nonzero Code-Segment Base Values

Optimization
In 32-bit threads, avoid using a nonzero code-segment (CS) base value. (In 64-bit mode, 
segmentation is disabled and the segment base value is ignored and treated as zero.)

Application
This optimization applies to:

• 32-bit software

Rationale
A nonzero CS base value causes an additional two cycles of branch-misprediction penalty when 
compared with a CS base value of zero.

7.6 Replacing Branches

Optimization
Use muxing constructs to simulate conditional moves in SIMD, AVX, and XOP code.

Application
This optimization applies to:

• 32-bit software

• 64-bit software

Rationale
Branches can negatively impact the performance of code. In SIMD, AVX, and XOP code, if the body 
of the branch is small, you can achieve higher performance instead computing both paths of the 
branch and using muxing constructs to construct the result. This simulates predicated execution or 
conditional moves. There are manySIMD AVX, and XOP instructions that can be useful for 
accomplishing this. The principal instructions are as follows: 
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Muxing Constructs
The most important construct to use in avoiding branches in SIMD code is a two-way muxing 
construct that is equivalent to the ternary operator (?:) in C and C++.

Examples

SIMD Solution (Preferred)

; r = (x < y) ? a : b
;
; In:  YMM0 = a
;      YMM1 = b
;      YMM2 = x
;      YMM3 = y
; Out: YMM0 = r

vcmpps  ymm2, ymm2,ymm3, 1    ;  x<y?)xffffffff:0 (Create selector in ymm2.)
vpcmov ymm2, ymm0, ymm1, ymm2 ; r=(x<y)?a:b 
                              ; (Use selector in ymm2; store result in ymm2.)
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7.7 Avoiding the LOOP Instruction

Optimization
Avoid using the LOOP instruction.

Application
This optimization applies to:

• 32-bit software

• 64-bit software

Rationale
The LOOP instruction has a latency of 7 cycles in 32-bit protected mode and 8 cycles in 64-bit 
protected mode.

Example
Avoid code like this, which uses the LOOP instruction:

label:
   ...
   loop label ;Latency is 7/8 cycles, depending upon whether we 

; are in 32-bit or 64-bit protected mode.

Instead, replace the loop instruction with a DEC and a JNZ:

label:
   ...
   dec rcx ;Latency of 1 cycle for register operand form of DEC.
   jnz label ;Latency of 1 cycle. 

7.8 Far Control-Transfer Instructions

Optimization
Use far control-transfer instructions only when necessary. (Far control-transfer instructions include 
the far forms of JMP, CALL, and RET, as well as the INT, INTO, and IRET instructions.)

Application
This optimization applies to:

• 32-bit software
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• 64-bit software

Rationale
The processor’s branch-prediction unit does not predict far branches.

7.9 Branches Not-Taken Preferable to  Branches 
Taken

Optimization
Whenever possible, use branches that are biased toward being not-taken over branches that are biased 
toward being taken.

Application
This optimization applies to:

• 32-bit software

• 64-bit software

Rationale
Correctly-predicted taken branches have at least one prediction-based bubble while not-taken 
branches do not. In addition, taken branches consume more branch prediction resources.



128 Branch Optimizations Chapter 7

47414 Rev. 3.06 January 2012Software Optimization Guide for AMD Family 15h Processors



Chapter 8 Scheduling Optimizations 129

Software Optimization Guide for AMD Family 15h Processors47414 Rev. 3.06 January 2012

Chapter 8 Scheduling Optimizations

The optimizations discussed in this chapter help improve scheduling in the processor.

This chapter covers the following topics:

8.1 Instruction Scheduling by Latency

Optimization
In general, select instructions with shorter latencies that are FastPath Single —not FastPath Double—
instructions. For a list of instruction latencies and classifications, see Appendix B, “Instruction 
Latencies.”

Application
This optimization applies to:

• 32-bit software

• 64-bit software

Rationale
AMD Family 15h processors can execute up to four AMD64 instructions per cycle, with each 
instruction possibly having a different latency. AMD Family 15h processors have flexible scheduling, 
but for absolute maximum performance, schedule instructions according to their latencies and data 
dependencies. The goal is to reduce the overall length of dependency chains.

8.2 Loop Unrolling

Optimization
Use loop unrolling where appropriate to increase instruction-level parallelism:

Topic Page
Instruction Scheduling by Latency 129
Loop Unrolling 129
Inline Functions 134
MOVZX and MOVSX 135
Pointer Arithmetic in Loops 136
Pushing Memory Data Directly onto the Stack 137
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Application
This optimization applies to:

• 32-bit software

• 64-bit software

Loop Unrolling
Loop unrolling is a technique that duplicates the body of a loop one or more times in order to increase 
the number of instructions relative to the branch and allow operations from different loop iterations to 
execute in parallel.

There are two types of loop unrolling:

• Complete loop unrolling

• Partial loop unrolling

Complete Loop Unrolling
Complete loop unrolling eliminates the loop overhead completely by replacing the loop with copies 
of the loop body.

Because complete loop unrolling removes the loop counter, it also reduces register pressure. 
However, completely unrolling very large loops can result in the inefficient use of the L1 instruction 
cache.

Example—Complete Loop Unrolling
In the following C code, the number of loop iterations is known at compile time and the loop body is 
less than 100 instructions:

#define ARRAY_LENGTH 3

int sum, i, a[ARRAY_LENGTH];

If all of these conditions are true Then use
• The loop is in a frequently executed piece of code.
• The number of loop iterations is known at compile time.
• The loop body includes fewer than 10 instructions.

Complete loop unrolling

• Spare registers are available (for example, when operating in 64-bit mode, 
where additional registers are available).

• The loop body is small, so that loop overhead is significant.
• The number of loop iterations is likely greater than 10.

Partial loop unrolling
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...
sum = 0;
for (i = 0; i < ARRAY_LENGTH; i++) {
   sum = sum + a[i];
}

To completely unroll an n-iteration loop, remove the loop control and replicate the loop body n times:

sum = 0;
sum = sum + a[0];
sum = sum + a[1];
sum = sum + a[2];

Partial Loop Unrolling
Partial loop unrolling reduces the loop overhead by duplicating the loop body several times, 
changing the increment in the loop, and adding cleanup code to execute any leftover iterations of the 
loop. The number of times the loop body is duplicated is known as the unroll factor.

However, partial loop unrolling may increase register pressure. Below, the calculations for computing 
the floating-point additiom operations per cycle (FADDs/cycle) are shown for the loop before and 
after loop unrolling to illustrate why an unroll factor of two is chosen.

Example—Partial Loop Unrolling
In the following C code, each element of one array is added to the corresponding element of another 
array:

double a[MAX_LENGTH], b[MAX_LENGTH];

for (i = 0; i < MAX_LENGTH; i++) {
   a[i] = a[i] + b[i];
}

Without loop unrolling, this is the equivalent assembly-language code:

   mov rcx, MAX_LENGTH   ; Initialize counter.
   mov rax, OFFSET a     ; Load address of array a into RAX.
   mov rbx, OFFSET b     ; Load address of array b into RBX.
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add_loop:
   vmovsd  xmm0, QWORD PTR [rax] ; Load double pointed to by RAX
   vaddsd  xmm0, QWORD PTR [rbx] ; Add double pointed to by RBX
   vmovsd  QWORD PTR [rax], xmm0 ; Store double result.   
   add  rax, 8            ; Point to next element of array a.
   add  rbx, 8            ; Point to next element of array b.
   dec  rcx               ; Decrement counter.
   jnz  add_loop          ; If elements remain, then jump.

The rolled loop consists of seven instructions. AMD Family 15h processors can decode and retire  up 
to four instructions per cycle. This code cannot execute faster than seven instructions in two  cycles.
cyc  #instrs  instrs                  note
 1    3        movsd, addsd, movsd    Only one load/store pair per dispatch
 2    4        add, add, dec, jnz     max of 4

With the pipelined floating-point adder allowing one FADD every cycle [still to confirm], and one 
FADD in each iteration, the FADDS/cycle for this rolled loop is 7/14 as calculated here:
7 instrs       iters      1 FADD      7 FADDs
--------- x  -------- x  -------- =  ---------- = 0.5 FADDs/cycle
2 cycles     7 instrs     iters      14 cycles

After partial loop unrolling at an unroll factor of two, the new code creates a potential end case that 
must be handled outside the loop.

The unrolled loop consists of 10 instructions. This code can now go no faster than ten instructions per 
three cycles:
cyc  #instrs    instrs                     note
 1      3       movsd, addsd, movsd        Only one load/store pair per dispatch
 2      4       movsd, addsd, movsd, add   max of 4
 3      3       add, dec, jnz              max of 4

For the partially unrolled loop the FADDS/cycle is now 20/30 which is 1.333 times as fast as the 
original loop:
10 instrs       iters      2 FADD      20 FADDs
--------- x   --------- x -------- = ----------- = 0.666 FADDs/cycle
 3 cycles     10 instrs     iters      30 cycles

cyc  #instrs  instrs                 note

1    3        movsd, addsd, movsd    Only one load/store pair per dispatch

2    4        add, add, dec, jnz     max of 4

With the pipelined floating-point adder allowing one FADD every cycle and one FADD in each 
iteration, the FADDS/cycle for this rolled loop is 7/14 as calculated here:
7 instrs       iters      1 FADD      7 FADDs
--------- x ---------- x -------- = ----------- = 0.5 FADDs/cycle
2 cycles     7 instrs      iters      14 cycles

After partial loop unrolling at an unroll factor of two, the new code creates a potential end case that 
must be handled outside the loop:
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The unrolled loop consists of 10 instructions. This code can now go no faster than ten instructions per 
three cycles:
cyc  #instrs  instrs                      note
 1      3      movsd, addsd, movsd        Only one load/store pair 
                                          per dispatch
 2    4        movsd, addsd, movsd, add   max of 4
 3    3        add, dec, jnz              max of 4

For the partially unrolled loop the FADDS/cycle is now 20/30 which is 1.333 times as fast as the 
original loop:
10 instrs       iters      2 FADD      20 FADDs
---------- x ----------- x -------- = ----------- = 0.666 FADDs/cycle
 3 cycles     10 instrs     iters      30 cycles

Deriving the Loop Control for Partially Unrolled Loops
A frequently used loop construct is a counting loop. In a typical case, the loop count starts at some 
lower bound (low), increases by some fixed, positive increment (inc) for each iteration of the loop, 
and may not exceed some upper bound (high):

for (k = low; k <= high; k += inc) {
   x[k] = ...
}

The following code shows how to partially unroll such a loop by an unroll factor (factor) and how to 
derive the loop control for the partially unrolled version of the loop:

for (k = low; k <= (high - (factor - 1) * inc); k += factor * inc) {
   // Begin the series of unrolled statements.
   x[k + 0 * inc] = ...
   // Continue the series if the unrolling factor is greater than 2.
   x[k + 1 * inc] = ...
   x[k + 2 * inc] = ...
   ...
   // End the series.
   x[k + (factor - 1) * inc] = ...
}  

// Handle the end cases.
for (k = k; k <= high; k += inc) {
   x[k] = ...
}

Related Information
For information on loop unrolling at the C-source level, see 3.4 “Unrolling Small Loops” on page 47.
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8.3 Inline Functions

Optimization
Use function inlining when:

• A function is called from just one site in the code. (For the C language, determination of this 
characteristic is made easier if functions are explicitly declared static unless they require 
external linkage.)

• A function—once inlined—contains fewer than 25 machine instructions.

Application
This optimization applies to:

• 32-bit software

• 64-bit software

Rationale
There are advantages and disadvantages to function inlining. On the one hand, function inlining 
eliminates function-call overhead and allows better register allocation and instruction scheduling at 
the site of the function call. The disadvantage of function inlining is decreased code reference 
locality, which can increase execution time due to instruction cache misses.

For functions that create fewer than 25 machine instructions once inlined, it is likely that the function-
call overhead is close to, or more than, the time spent executing the function body. In these cases, 
function inlining is recommended.

Function-call overhead on the AMD Family 15h processors can be low because calls and returns are 
executed very quickly due to the use of prediction mechanisms. However, there is still overhead due 
to passing function arguments through memory, which creates store-to-load-forwarding 
dependencies. (In 64-bit mode, this overhead is typically avoided by passing more arguments in 
registers, as specified in the AMD64 Application Binary Interface [ABI] for the operating system.)

For longer functions, inlining yields diminishing returns. A function that results in the insertion of 
more than 500 machine instructions at the call site should probably not be inlined. Some larger 
functions might consist of multiple, relatively short paths. The execution time of the body of such a 
function may be relatively short compared to the function overhead, in which case inlining can 
improve performance. Profiling information is the best guide in determining whether to inline such 
large functions.

Additional Recommendations for Compiler Writers
In general, function inlining works best if the compiler utilizes feedback from a profiler to identify the 
function calls most frequently executed. If such data is not available, a reasonable approach is to 
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concentrate on function calls inside loops. Do not consider as candidates for inlining any functions 
that are directly recursive. However, if they are end-recursive, the compiler should convert them to an 
iterative equivalent to avoid potential overflow of the processor’s return-prediction mechanism 
(return stack) during deep recursion. For best results, a compiler should support function inlining 
across multiple source files. In addition, a compiler should provide intrinsic functions for commonly 
used library routines, such as sin, strcmp, or memcpy.

8.4 MOVZX and MOVSX

Optimization
Use the MOVZX and MOVSX instructions to zero-extend or sign-extend, respectively, an operand to 
a larger size.

Application
This optimization applies to:

• 32-bit software

• 64-bit software

Rationale
Typical code for zero extension that replaces MOVZX uses more decode and execution resources 
than MOVZX. It also has higher latency due to the superset dependency between the XOR and the 
MOV, which requires a merge operation.

Example
When zero-extending an operand (in this case, a byte), avoid code such as the following:

xor rax, rax
mov al, mem

Instead, use the MOVZX instruction:

movzx rax, BYTE PTR mem
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8.5 Pointer Arithmetic in Loops

Optimization
Minimize instruction usage via complex addressing modes in loops, especially if the loop bodies are 
small. Take advantage of scaled-index addressing modes to utilize the loop counter as an index into 
memory arrays.

Application
This optimization applies to:

• 32-bit software

• 64-bit software

Rationale
In small loops, pointer arithmetic causes significant overhead. Using scaled-index addressing modes 
has no negative impact on execution speed, but the reduced number of instructions preserves decode 
bandwidth.

Example
Consider the following C code, which adds the elements of two arrays and stores them in a third 
array:

In cases where the size of the arrays is passed as a parameter and is variant, we can show how to make 
good use of Scale-Index-Base address mode.  First consider this source:
void foo(int maxsize, int* a, int* b, int* c)
{
      for (i = 0; i < maxsize; i++) {
            c[i] = a[i] + b[i];
      }
}

Now consider a down counted loop and the canonicalized forms of variables a, b, and c which can be 
accessed optimally using the address method mentioned above in the MASM assembler example 
below:
      mov   ecx, DWORD PTR maxsize[esp]
      xor   eax, eax
      test  ecx, ecx
      jle   SHORT end_loop
      mov   edx, DWORD PTR c[esp]                    ; load base address of c
      mov   esi, DWORD PTR b[esp]                    ; load base address of b
      mov   edi, DWORD PTR a[esp]                    ; load base address of a
start_loop:
      mov   ebx, DWORD PTR [edi+eax*4]
      add   ebx, DWORD PTR [esi+eax*4]
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      mov   DWORD PTR [edx+eax*4], ebx          ; store a[i] + b[i] into c[i]
      inc   eax
      cmp   eax, ecx
      jl    SHORT start_loop
end_loop:

Note that we use eax as a common index for i and that we use the load-execute form of add to 
minimize instructions to accumulate a[i] + b[i].

In the loop above, only one register is changing, the index register used commonly to address all three 
variables.

8.6 Pushing Memory Data Directly onto the Stack

Optimization
Push memory data directly onto the stack instead of loading it into a register first.

Application
This optimization applies to:

• 32-bit software

• 64-bit software

Rationale
Pushing memory data directly onto the stack reduces register pressure and eliminates data 
dependencies.

Example
Avoid code that first loads the memory data into a register and then pushes it onto the stack:

mov  rax, mem
push rax

Instead, push the memory data directly onto the stack:

push mem
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Chapter 9 Integer Optimizations

The optimizations in this chapter help improve integer performance.

This chapter covers the following topics:

9.1 Replacing Division with Multiplication

Optimization
Replace integer division by constants with multiplication by the reciprocal. 

Rationale
AMD Family 15h processors have very fast integer multiplication instructions (IMUL, MUL) 
whereas the integer division instructions (IDIV and DIV) are microcode instructions having a 
variable latency that depends on the number of bits in the divisor. (For exact latencies, see 
“Optimizing Integer Division” on page 161 and Appendix B, “Instruction Latencies.”)

For this reason division by a constant should be replaced by multiplication by the reciprocal of the 
constant. The exact code to use for multiplication by the reciprocal of the constant can be found either 
in the examples later in this section or by using the utilities in “Derivation of Algorithm, Multiplier, 
and Shift Factor for Integer Division by Constants” on page 155.

Multiplication by Reciprocal (Division) Utility
The code for the utilities is shown in “Derivation of Algorithm, Multiplier, and Shift Factor for 
Integer Division by Constants” on page 155. The utilities provided in this document are for reference 
only and are not supported by AMD.

Topic Page
Replacing Division with Multiplication 139
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Using XOR to Clear Integer Registers 147
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Derivation of Algorithm, Multiplier, and Shift Factor for Integer Division by Constants 155
Optimizing Integer Division 161
Efficient Implementation of Population Count and Leading-Zero Count 162
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Signed Division Utility

The sdiv.exe utility finds the fastest code for signed division by a constant. The utility displays the 
code after the user enters a signed constant divisor. To redirect the code to a file, type the following 
command:

sdiv > example.out

Unsigned Division Utility

The udiv.exe utility finds the fastest code for unsigned division by a constant. The utility displays 
the code after the user enters an unsigned constant divisor. To redirect the code to a file, type the 
following command:

udiv > example.out

Unsigned Division by Multiplication of Constant

Algorithm: Divisors 1 ≤ d < 231, Odd d

The following code shows an unsigned division using a constant value multiplier.

; a = algorithm
; m = multiplier
; s = shift factor

; a == 0
mov eax, m
mul dividend
shr edx, s   ; EDX = quotient

; a == 1
mov eax, m
mul dividend
add eax, m
adc edx, 0
shr edx, s   ; EDX = quotient

Code for determining the algorithm (a), multiplier (m), and shift factor (s) from the divisor (d) is 
found in the section “Derivation of Algorithm, Multiplier, and Shift Factor for Integer Division by 
Constants” on page 155.

Algorithm: Divisors 231 ≤ d < 232

For divisors 231 ≤  d < 232, the possible quotient values are either 0 or 1. For this reason, it is easy to 
establish the quotient by simple comparison of the dividend and divisor. When the dividend needs to 
be preserved, consider using code like the following:

; In:  EAX = dividend
; Out: EDX = quotient
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xor edx, edx   ; 0
cmp eax, d     ; CF = (dividend < divisor) ? 1 : 0
sbb edx, -1    ; quotient = 0 + 1 - CF = (dividend < divisor) ? 0 : 1

When it is not necessary to preserve the dividend, the division can be accomplished without the use of 
an additional register, thus reducing register pressure, as shown in the following example:

; In:  EAX = dividend
; Out: EDX = quotient

cmp edx, d    ; CF = (dividend < divisor) ? 1 : 0
mov eax, 0    ; 0
sbb eax, -1   ; quotient = 0 + 1 - CF = (dividend < divisor) ? 0 : 1

Simpler Code for Restricted Dividend

Integer division by a constant can be accelerated by limiting the range of the dividend, which removes 
a shift associated with most divisors. For example, for a divide-by-10 operation, use the following 
code, if the dividend is less than 4000_0005h:

mov eax, dividend
mov edx, 01999999Ah
mul edx
mov quotient, edx

Signed Division by Multiplication of Constant

Algorithm: Divisors 2 ≤ d < 231

The following algorithms work if the divisor is positive. If the divisor is negative, use ABS(d) instead 
of d, and append a NEG edx instruction to the code. These changes make use of the fact
that n/–d = –(n/d).

; a is the algorithm to select between two sets of code
;      sequences depending on the calculation of multiplier.
; m is the multiplier, the constant used with the multiply instruction.
; s is the amount of right shifting to accomplish the division after the
;      multiplication of a constant.

; a == 0
mov  eax, m 
imul dividend
mov  eax, dividend
shr  eax, 31
sar  edx, s
add  edx, eax        ; Quotient in EDX

; a == 1
mov  eax, m
imul dividend
mov  eax, dividend
add  edx, eax
shr  eax, 31
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sar  edx, s
add  edx, eax   ; Quotient in EDX

Code for determining the algorithm (a), multiplier (m), and shift factor (s) is shown in “Derivation of 
Algorithm, Multiplier, and Shift Factor for Integer Division by Constants” on page 155.

Signed Division by 2

; In:  EAX = dividend
; Out: EAX = quotient

cmp eax, 80000000h   ; CF = 1 if dividend >= 0.
sbb eax, -1          ; Increment dividend if it is < 0.
sar eax, 1           ; Perform right shift.

Signed Division by 2n

; In:  EAX = dividend
; Out: EAX = quotient

cdq                  ; Sign extend into EDX.
and edx, (2^n - 1)   ; Mask correction (use divisor - 1)
add eax, edx         ; Apply correction if necessary.
sar eax, (n)         ; Perform right shift by log2(divisor).

Signed Division by –2
; In:  EAX = dividend
; Out: EAX = quotient

cmp eax, 80000000h   ; CF = 1 if dividend >= 0.
sbb eax, -1          ; Increment dividend if it is < 0.
sar eax, 1           ; Perform right shift.
neg eax              ; Use (x / -2) == -(x / 2).

Signed Division by –(2n)
; In:  EAX = dividend
; Out: EAX = quotient

cdq                  ; Sign extend into EDX.
and edx, (2^n - 1)   ; Mask correction (-divisor - 1).
add eax, edx         ; Apply correction if necessary.
sar eax, (n)         ; Right shift by log2(-divisor).
neg eax              ; Use (x / -(2^n)) == (-(x / 2^n)).

Remainder of Signed Division by 2 or –2
; In:  EAX = dividend
; Out: EAX = remainder

cdq            ; Sign extend into EDX.
and eax, 1     ; Compute remainder.
xor eax, edx   ; Negate remainder if
sub eax, edx   ;  dividend was < 0.
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Remainder of Signed Division by 2n or –(2n)
; In:  EAX = dividend
; Out: EAX = remainder

cdq                  ; Sign extend into EDX.
and edx, (2^n - 1)   ; Mask correction (abs(divisor) - 1)
add eax, edx         ; Apply pre-correction.
and eax, (2^n - 1)   ; Mask out remainder (abs(divisor) - 1)
sub eax, edx         ; Apply pre-correction if necessary.

9.2 Alternative Code for Multiplying by a Constant

Optimization
Devise instruction sequences with lower latency to accomplish multiplication by certain constant 
multipliers.

Rationale
A 32-bit integer multiplied by a constant has a latency of 3 cycles; a 64-bit integer multiplied by a 
constant has a latency of 4 cycles. For certain constant multipliers, instruction sequences can be 
devised that accomplish the multiplication with lower latency. Because AMD Family 15h processors 
contain only one integer multiplier but up to four integer execution units, the replacement code can 
provide better throughput as well.

Most replacement sequences require the use of an additional temporary register, thus increasing 
register pressure. If register pressure in a piece of code that performs integer multiplication with a 
constant is already high, it could be better for the overall performance of that code to use the IMUL 
instruction instead of the replacement code. Similarly, replacement sequences with low latency but 
containing many instructions may negatively influence decode bandwidth as compared to the IMUL 
instruction. In general, replacement sequences containing more than four instructions are not 
recommended.

The following code samples are designed for the original source to receive the final result. Other 
sequences are possible if the result is in a different register. Sequences that do not require a temporary 
register are favored over those requiring a temporary register, even if the latency is higher. To keep 
code size small, arithmetic-logic-unit operations are preferred over shifts. Similarly, both arithmetic-
logic-unit operations and shifts are favored over the LEA instruction.

There are improvements in the AMD Family 15h processors’ multiplier over that of previous x86 
processors. For this reason, when doing 32-bit multiplication, only use the alternative sequence if the 
alternative sequence has a latency that is less than or equal to 2 cycles. For 64-bit multiplication, only 
use the alternative sequence if the alternative sequence has a latency that is less than or equal to 
3 cycles.
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Examples

by 2:   add reg1, reg1    

by 3:   lea reg1, [reg1+reg1*2]  

by 4:   shl reg1, 2              

by 5:   lea reg1, [reg1+reg1*4]   

by 6:   lea reg1, [reg1+reg1*2]   
        add reg1, reg1

by 7:   mov reg2, reg1            
        shl reg1, 3
        sub reg1, reg2

by 8:   shl reg1, 3              

by 9:   lea reg1, [reg1+reg1*8]  

by 10:  lea reg1, [reg1+reg1*4]  
        add reg1, reg1

by 11:  lea reg2, [reg1+reg1*8]  
        add reg1, reg1
        add reg1, reg2

by 12:  lea reg1, [reg1+reg1*2]  
        shl reg1, 2

by 13:  lea reg2, [reg1+reg1*2]  
        shl reg1, 4
        sub reg1, reg2

by 14:  lea reg2, [reg1+reg1]   
        shl reg1, 4
        sub reg1, reg2

by 15:  mov reg2, reg1         
        shl reg1, 4
        sub reg1, reg2

by 16:  shl reg1, 4            

by 17:  mov reg2, reg1          
        shl reg1, 4
        add reg1, reg2

by 18:  lea reg1, [reg1+reg1*8]  
        add reg1, reg1

by 19:  lea reg2, [reg1+reg1*2] 
        shl reg1, 4
        add reg1, reg2
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by 20:  lea reg1, [reg1+reg1*4]  
        shl reg1, 2

by 21:  lea reg2, [reg1+reg1*4]  
        shl reg1, 4
        add reg1, reg2

by 22:  imul reg1, 22             ; Use the IMUL instruction.

by 23:  lea reg2, [reg1+reg1*8]  
        shl reg1, 5
        sub reg1, reg2

by 24:  lea reg1, [reg1+reg1*2]   
        shl reg1, 3

by 25:  lea reg2, [reg1+reg1*8]  
        shl reg1, 4
        add reg1, reg2

by 26:  imul reg1, 26             ; Use the IMUL instruction.

by 27:  lea reg2, [reg1+reg1*4]  
        shl reg1, 5
        sub reg1, reg2

by 28:  lea reg2, [REG1*4]      
        shl reg1, 5
        sub reg1, reg2

by 29:  lea reg2, [reg1+reg1*2] 
        shl reg1, 5
        sub reg1, reg2

by 30:  lea reg2, [reg1+reg1]    
        shl reg1, 5
        sub reg1, reg2

by 31:  mov reg2, reg1          
        shl reg1, 5
        sub reg1, reg2

by 32:  shl reg1, 5             
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9.3 Repeated String Instructions

Optimization
Use the REP prefix judiciously when performing string operations. 

Rationale
In general, using the REP prefix to repeatedly perform string instructions is less efficient than other 
methods, especially when copying blocks of memory. Even though using the REP prefix may seem 
attractive due to its small code size, a loop may yield better performance due to its minimal overhead, 
compared to the setup overhead of using the REP prefix. However, certain string operations can 
benefit from using the REP prefix when the increased throughput compared to that of a loop makes 
up for its setup overhead for any specific repeat count.

Guidelines for Repeated String Instructions

The following sections contain guidelines for the careful scheduling of VectorPath repeated string 
instructions.

Use the Largest Possible Operand Size

Always move data using the largest operand size possible. For example, in 32-bit applications, use 
REP MOVSD rather than REP MOVSW, and REP MOVSW rather than REP MOVSB. Use REP STOSD rather 
than REP STOSW, and REP STOSW rather than REP STOSB.

In 64-bit mode, a quadword data size is available and offers better performance (for example, 
REP MOVSQ and REP STOSQ).

Make Sure that DF is 0 (Increment)

Some string instructions with DF = 1 (decrement) may be slower.

Align Source and Destination with Operand Size

Make sure that accesses are aligned and handle the end case separately, if necessary. If there are both 
a source (read from) and a destination (written to) and only one can be aligned, align the destination 
and leave the source misaligned in order to optimize internal resources usage.

Inline REP String with Constant Small Counts

If the repeat count is constant and low (less than eight), expand REP string instructions into 
equivalent sequences of simple AMD64 instructions. For example, use an inline sequence of loads 
and stores to emulate REP MOVS or use a sequence of stores to emulate REP STOS. This technique 
eliminates the setup overhead of REP instructions and increases instruction throughput.
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Use REP String with Constant Large Counts 

If the repeat count is constant and large (in the hundreds), use REP string instructions up to 
approximately the data cache size. Above this limit, other techniques must be used to achieve optimal 
performance.

Use a Loop for REP String with Low Variable Counts

If the repeat count is variable, but is (likely) less than eight, use a simple loop to move or store the 
data. Otherwise, use an unrolled loop to move or store the data. These techniques avoid the overhead 
of REP MOVS and REP STOS.

Use a Loop for REP MOVS/CMPS If There Can Be Conflicts

The REP MOVS and REP CMPS instructions both issue two data cache operations per iteration.  If 
certain bits of the linear addresses match, the load-store unit might have to cancel an operation and 
retry. To avoid this behavior, make sure the following bits in the linear address do not match:

• [6:4]—if these bits match, a cache bank conflict will occur

• [11:3]—if these bits match, a store-to-load forwarding mismatch will occur

For details, see 6.3 “Store-to-Load Forwarding Restrictions” on page 98 and 6.7 “Placing Code and 
Data in the Same 64-Byte Cache Line” on page 112.

All Other Cases

For all other cases, it is best to call the appropriate routines in the run-time library, assuming that 
optimized routines are available.  For more details on writing routines using repeated string 
instructions, see 6.8 “Memory and String Routines” on page 113.

9.4 Using XOR to Clear Integer Registers

Optimization
To clear an integer register to all zeros, use the XOR instruction to exclusive OR the register with 
itself, as shown below.

Rationale
AMD Family 15h processors are able to avoid the false read dependency on the XOR instruction.

Examples

Acceptable
mov reg, 0
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Preferred
xor reg, reg

9.5 Efficient 64-Bit Integer Arithmetic in 32-Bit Mode

Optimization
The following section contains a collection of code snippets and subroutines showing the efficient 
implementation of 64-bit arithmetic in 32-bit mode. Note that these are 32-bit recommendations, in 
64-bit mode it is important to use 64-bit integer instructions for best performance.

Addition, subtraction, negation, and shifting are best handled by inline code. Multiplication, division, 
and the computation of remainders are less common operations and are usually implemented as 
subroutines. If these subroutines are used often, the programmer should consider inlining them. 
Except for division and remainder calculations, the following code works for both signed and 
unsigned integers. The division and remainder code shown works for unsigned integers, but can 
easily be extended to handle signed integers.

64-Bit Addition
; Add ECX:EBX to EDX:EAX, and place sum in EDX:EAX.
add eax, ebx
adc edx, ecx

64-Bit Subtraction
; Subtract ECX:EBX from EDX:EAX and place difference in EDX:EAX.
sub eax, ebx
sbb edx, ecx

64-Bit Negation
; Negate EDX:EAX.
not edx
neg eax
sbb edx, -1   ; Fix: Increment high word if low word was 0.

64-Bit Left Shift
; Shift EDX:EAX left, ??shift count in ECX (count
;  applied modulo 64).
   shld edx, eax, cl   ; First apply shift count.
   shl  eax, cl        ; ??mod 32 to EDX:EAX
   test ecx, 32        ; Need to shift by another 32?
   jz   lshift_done    ; No, done.
   mov  edx, eax       ; Left shift EDX:EAX
   xor  eax, eax       ;  by 32 bits

lshift_done:

64-Bit Right Shift
   shrd eax, edx, cl   ; First apply shift count.
   shr  edx, cl        ; ??mod 32 to EDX:EAX
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   test ecx, 32        ; Need to shift by another 32?
   jz   rshift_done    ; No, done.
   mov  eax, edx       ; Left shift EDX:EAX
   xor  edx, edx       ;  by 32 bits.

rshift_done:

64-Bit Multiplication
; _llmul computes the low-order half of the product of its
;  arguments, two 64-bit integers.
;
; In:       [ESP+8]:[ESP+4] = multiplicand
;           [ESP+16]:[ESP+12] = multiplier
; Out:      EDX:EAX = (multiplicand * multiplier) % 2^64
; Destroys: EAX, ECX, EDX, EFlags

_llmul PROC
   mov edx, [esp+8]    ; multiplicand_hi
   mov ecx, [esp+16]   ; multiplier_hi
   or  edx, ecx        ; One operand >= 2^32?
   mov edx, [esp+12]   ; multiplier_lo
   mov eax, [esp+4]    ; multiplicand_lo
   jnz twomul          ; Yes, need two multiplies.
   mul edx             ; multiplicand_lo * multiplier_lo
   ret                 ; Done, return to caller.

twomul:
   imul edx, [esp+8]         ; p3_lo = multiplicand_hi * multiplier_lo
   imul ecx, eax             ; p2_lo = multiplier_hi * multiplicand_lo
   add  ecx, edx             ; p2_lo + p3_lo
   mul  dword ptr [esp+12]   ; p1 = multiplicand_lo * multiplier_lo
   add  edx, ecx             ; p1 + p2_lo + p3_lo = result in EDX:EAX
   ret                       ; Done, return to caller.

_llmul ENDP

64-Bit Unsigned Division
; _ulldiv divides two unsigned 64-bit integers and returns the quotient.
;
; In:       [ESP+8]:[ESP+4] = dividend
;           [ESP+16]:[ESP+12] = divisor
; Out:      EDX:EAX = quotient of division
; Destroys: EAX, ECX, EDX, EFlags

_ulldiv PROC
   push ebx             ; Save EBX as per calling convention.
   mov  ecx, [esp+20]   ; divisor_hi
   mov  ebx, [esp+16]   ; divisor_lo
   mov  edx, [esp+12]   ; dividend_hi
   mov  eax, [esp+8]    ; dividend_lo
   test ecx, ecx        ; divisor > (2^32 – 1)?
   jnz  big_divisor     ; Yes, divisor > 2^32 – 1.
   cmp  edx, ebx        ; Only one division needed (ECX = 0)?
   jae  two_divs        ; Need two divisions.
   div  ebx             ; EAX = quotient_lo
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   mov  edx, ecx        ; EDX = quotient_hi = 0 (quotient in EDX:EAX)
   pop  ebx             ; Restore EBX as per calling convention.
   ret                  ; Done, return to caller.

two_divs:
   mov  ecx, eax   ; Save dividend_lo in ECX.
   mov  eax, edx   ; Get dividend_hi.
   xor  edx, edx   ; Zero-extend it into EDX:EAX.
   div  ebx        ; quotient_hi in EAX
   xchg eax, ecx   ; ECX = quotient_hi, EAX = dividend_lo
   div  ebx        ; EAX = quotient_lo
   mov  edx, ecx   ; EDX = quotient_hi (quotient in EDX:EAX)
   pop  ebx        ; Restore EBX as per calling convention.
   ret             ; Done, return to caller.

big_divisor:
   push edi                  ; Save EDI as per calling convention.
   mov  edi, ecx             ; Save divisor_hi.
   shr  edx, 1               ; Shift both divisor and dividend right
   rcr  eax, 1               ;  by 1 bit.
   ror  edi, 1
   rcr  ebx, 1
   bsr  ecx, ecx             ; ECX = number of remaining shifts
   shrd ebx, edi, cl         ; Scale down divisor and dividend
   shrd eax, edx, cl         ;  such that divisor is less than
   shr  edx, cl              ;  2^32 (that is, it fits in EBX).
   rol  edi, 1               ; Restore original divisor_hi.
   div  ebx                  ; Compute quotient.
   mov  ebx, [esp+12]        ; dividend_lo
   mov  ecx, eax             ; Save quotient.
   imul edi, eax             ; quotient * divisor high word (??low only)
   mul  dword ptr [esp+20]   ; quotient * divisor low word
   add  edx, edi             ; EDX:EAX = quotient * divisor
   sub  ebx, eax             ; dividend_lo – (quot.*divisor)_lo
   mov  eax, ecx             ; Get quotient.
   mov  ecx, [esp+16]        ; dividend_hi
   sbb  ecx, edx             ; Subtract (divisor * quot.) from dividend.
   sbb  eax, 0               ; Adjust quotient if remainder negative.
   xor  edx, edx             ; Clear high word of quot. (EAX<=FFFFFFFFh).
   pop  edi                  ; Restore EDI as per calling convention.
   pop  ebx                  ; Restore EBX as per calling convention.
   ret                       ; Done, return to caller.

_ulldiv ENDP
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64-Bit Signed Division
; _lldiv divides two signed 64-bit numbers and delivers the quotient 
;
; In:       [ESP+8]:[ESP+4] = dividend
;           [ESP+16]:[ESP+12] = divisor
; Out:      EDX:EAX = quotient of division
; Destroys: EAX, ECX,E DX, EFlags

_lldiv PROC
   push ebx    ; Save EBX as per calling convention.
   push esi    ; Save ESI as per calling convention.
   push edi    ; Save EDI as per calling convention.
   mov  ecx, [esp+28]   ; divisor_hi
   mov  ebx, [esp+24]   ; divisor_lo
   mov  edx, [esp+20]   ; dividend_hi
   mov  eax, [esp+16]   ; dividend_lo
   mov  esi, ecx        ; divisor_hi
   xor  esi, edx        ; divisor_hi ^ dividend_hi 
   sar  esi, 31         ; (quotient < 0) ? -1 : 0
   mov  edi, edx        ; dividend_hi
   sar  edi, 31         ; (dividend < 0) ? -1 : 0
   xor  eax, edi        ; If (dividend < 0),
   xor  edx, edi        ;  compute 1's complement of dividend.
   sub  eax, edi        ; If (dividend < 0),
   sbb  edx, edi        ;  compute 2's complement of dividend.
   mov  edi, ecx        ; divisor_hi
   sar  edi, 31         ; (divisor < 0) ? -1 : 0
   xor  ebx, edi        ; If (divisor < 0),
   xor  ecx, edi        ;  compute 1's complement of divisor.
   sub  ebx, edi        ; If (divisor < 0),
   sbb  ecx, edi        ;  compute 2's complement of divisor.
   jnz  big_divisor     ; divisor > 2^32 - 1
   cmp  edx, ebx        ; Only one division needed (ECX = 0)?
   jae  two_divs        ; Need two divisions.
   div  ebx             ; EAX = quotient_lo
   mov  edx, ecx        ; EDX = quotient_hi = 0 (quotient in EDX:EAX)
   xor  eax, esi        ; If (quotient < 0),
   xor  edx, esi        ;  compute 1's complement of result.
   sub  eax, esi        ; If (quotient < 0),
   sbb  edx, esi        ;  compute 2's complement of result.
   pop  edi             ; Restore EDI as per calling convention.
   pop  esi             ; Restore ESI as per calling convention.
   pop  ebx             ; Restore EBX as per calling convention.
   ret                  ; Done, return to caller.

two_divs:
   mov  ecx, eax     ; Save dividend_lo in ECX.
   mov  eax, edx     ; Get dividend_hi.
   xor  edx, edx     ; Zero-extend it into EDX:EAX.
   div  ebx          ; quotient_hi in EAX
   xchg eax, ecx     ; ECX = quotient_hi, EAX = dividend_lo
   div  ebx          ; EAX = quotient_lo
   mov  edx, ecx     ; EDX = quotient_hi (quotient in EDX:EAX)
   jmp  make_sign   ; Make quotient signed.
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big_divisor:
   sub  esp, 12             ; Create three local variables.
   mov  [esp], eax          ; dividend_lo
   mov  [esp+4], ebx        ; divisor_lo
   mov  [esp+8], edx        ; dividend_hi
   mov  edi, ecx            ; Save divisor_hi.
   shr  edx, 1              ; Shift both
   rcr  eax, 1              ;  divisor and
   ror  edi, 1              ;  and dividend
   rcr  ebx, 1              ;  right by 1 bit.
   bsr  ecx, ecx            ; ECX = number of remaining shifts
   shrd ebx, edi, cl        ; Scale down divisor and
   shrd eax, edx, cl        ;  dividend such that divisor is
   shr  edx, cl             ;  less than 2^32 (that is, fits in EBX).
   rol  edi, 1              ; Restore original divisor_hi.
   div  ebx                 ; Compute quotient.
   mov  ebx, [esp]          ; dividend_lo
   mov  ecx, eax            ; Save quotient.
   imul edi, eax            ; quotient * divisor high word (??low only)
   mul  DWORD PTR [esp+4]   ; quotient * divisor low word
   add  edx, edi            ; EDX:EAX = quotient * divisor
   sub  ebx, eax            ; dividend_lo - (quot.*divisor)_lo
   mov  eax, ecx            ; Get quotient.
   mov  ecx, [esp+8]        ; dividend_hi
   sbb  ecx, edx            ; Subtract (divisor * quot.) from dividend
   sbb  eax, 0              ; Adjust quotient if remainder is negative.
   xor  edx, edx            ; Clear high word of quotient.
   add  esp, 12             ; Remove local variables.

make_sign:
   xor eax, esi   ; If (quotient < 0),
   xor edx, esi   ;  compute 1's complement of result.
   sub eax, esi   ; If (quotient < 0),
   sbb edx, esi   ;  compute 2's complement of result.
   pop edi        ; Restore EDI as per calling convention.
   pop esi        ; Restore ESI as per calling convention.
   pop ebx        ; Restore EBX as per calling convention.
   ret            ; Done, return to caller.
_lldiv ENDP

64-Bit Unsigned Remainder Computation
; _ullrem divides two unsigned 64-bit integers and returns the remainder.
;
; In:       [ESP+8]:[ESP+4] = dividend
;           [ESP+16]:[ESP+12] = divisor
;
; Out:      EDX:EAX = remainder of division
;
; Destroys: EAX, ECX, EDX, EFlags

_ullrem PROC
   push ebx              ; Save EBX as per calling convention.
   mov  ecx, [esp+20]    ; divisor_hi
   mov  ebx, [esp+16]    ; divisor_lo
   mov  edx, [esp+12]    ; dividend_hi
   mov  eax, [esp+8]     ; dividend_lo
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   test ecx, ecx         ; divisor > 2^32 - 1?
   jnz  r_big_divisor    ; Yes, divisor > 32^32 - 1.
   cmp  edx, ebx         ; Only one division needed (ECX = 0)?
   jae  r_two_divs       ; Need two divisions.
   div  ebx              ; EAX = quotient_lo
   mov  eax, edx         ; EAX = remainder_lo
   mov  edx, ecx         ; EDX = remainder_hi = 0
   pop  ebx              ; Restore EBX per calling convention.
   ret                   ; Done, return to caller.

r_two_divs:
   mov ecx, eax   ; Save dividend_lo in ECX.
   mov eax, edx   ; Get dividend_hi.
   xor edx, edx   ; Zero-extend it into EDX:EAX.
   div ebx        ; EAX = quotient_hi, EDX = intermediate remainder
   mov eax, ecx   ; EAX = dividend_lo
   div ebx        ; EAX = quotient_lo
   mov eax, edx   ; EAX = remainder_lo
   xor edx, edx   ; EDX = remainder_hi = 0
   pop ebx        ; Restore EBX as per calling convention.
   ret            ; Done, return to caller.

r_big_divisor:
   push edi                  ; Save EDI as per calling convention.
   mov  edi, ecx             ; Save divisor_hi.
   shr  edx, 1               ; Shift both divisor and dividend right
   rcr  eax, 1               ;  by 1 bit.
   ror  edi, 1
   rcr  ebx, 1
   bsr  ecx, ecx             ; ECX = number of remaining shifts
   shrd ebx, edi, cl         ; Scale down divisor and dividend such
   shrd eax, edx, cl         ;  that divisor is less than 2^32
   shr  edx, cl              ;  (that is, it fits in EBX).
   rol  edi, 1               ; Restore original divisor (EDI:ESI).
   div  ebx                  ; Compute quotient.
   mov  ebx, [esp+12]        ; dividend low word
   mov  ecx, eax             ; Save quotient.
   imul edi, eax             ; quotient * divisor high word (??low only)
   mul  DWORD PTR [esp+20]   ; quotient * divisor low word
   add  edx, edi             ; EDX:EAX = quotient * divisor
   sub  ebx, eax             ; dividend_lo – (quot.*divisor)_lo
   mov  ecx, [esp+16]        ; dividend_hi
   mov  eax, [esp+20]        ; divisor_lo
   sbb  ecx, edx             ; Subtract divisor * quot. from dividend.
   sbb  edx, edx             ; (remainder < 0) ? 0xFFFFFFFF : 0
   and  eax, edx             ; (remainder < 0) ? divisor_lo : 0
   and  edx, [esp+24]        ; (remainder < 0) ? divisor_hi : 0
   add  eax, ebx             ; remainder += (remainder < 0) ? divisor : 0
   pop  edi                  ; Restore EDI as per calling convention.
   pop  ebx                  ; Restore EBX as per calling convention.
   ret                       ; Done, return to caller.

_ullrem ENDP
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64-Bit Signed Remainder Computation
; _llrem divides two signed 64-bit numbers and returns the remainder.
;
; In:       [ESP+8]:[ESP+4] = dividend
;           [ESP+16]:[ESP+12] = divisor
;
; Out:      EDX:EAX = remainder of division
;
; Destroys: EAX, ECX, EDX, EFlags

   push ebx               ; Save EBX as per calling convention.
   push esi               ; Save ESI as per calling convention.
   push edi               ; Save EDI as per calling convention.
   mov  ecx, [esp+28]     ; divisor-hi
   mov  ebx, [esp+24]     ; divisor-lo
   mov  edx, [esp+20]     ; dividend-hi
   mov  eax, [esp+16]     ; dividend-lo
   mov  esi, edx          ; sign(remainder) == sign(dividend)
   sar  esi, 31           ; (remainder < 0) ? -1 : 0
   mov  edi, edx          ; dividend-hi
   sar  edi, 31           ; (dividend < 0) ? -1 : 0
   xor  eax, edi          ; If (dividend < 0),
   xor  edx, edi          ;  compute 1's complement of dividend.
   sub  eax, edi          ; If (dividend < 0),
   sbb  edx, edi          ;  compute 2's complement of dividend.
   mov  edi, ecx          ; divisor-hi
   sar  edi, 31           ; (divisor < 0) ? -1 : 0
   xor  ebx, edi          ; If (divisor < 0),
   xor  ecx, edi          ;  compute 1's complement of divisor.
   sub  ebx, edi          ; If (divisor < 0),
   sbb  ecx, edi          ;  compute 2's complement of divisor.
   jnz  sr_big_divisor    ; divisor > 2^32 - 1
   cmp  edx, ebx          ; Only one division needed (ECX = 0)?
   jae  sr_two_divs       ; No, need two divisions.
   div  ebx               ; EAX = quotient_lo
   mov  eax, edx          ; EAX = remainder_lo
   mov  edx, ecx          ; EDX = remainder_lo = 0
   xor  eax, esi          ; If (remainder < 0),
   xor  edx, esi          ;  compute 1's complement of result.
   sub  eax, esi          ; If (remainder < 0),
   sbb  edx, esi          ;  compute 2's complement of result.
   pop  edi               ; Restore EDI as per calling convention.
   pop  esi               ; Restore ESI as per calling convention.
   pop  ebx               ; Restore EBX as per calling convention.
   ret                    ; Done, return to caller.

sr_two_divs:
   mov ecx, eax        ; Save dividend_lo in ECX.
   mov eax, edx        ; Get dividend_hi.
   xor edx, edx        ; Zero-extend it into EDX:EAX.
   div ebx             ; EAX = quotient_hi, EDX = intermediate remainder
   mov eax, ecx        ; EAX = dividend_lo
   div  ebx            ; EAX = quotient_lo
   mov  eax, edx       ; remainder_lo
   xor  edx, edx       ; remainder_hi = 0
   jmp  sr_makesign    ; Make remainder signed.
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sr_big_divisor:
   sub  esp, 16             ; Create three local variables.
   mov  [esp], eax          ; dividend_lo             
   mov  [esp+4], ebx        ; divisor_lo             
   mov  [esp+8], edx        ; dividend_hi
   mov  [esp+12], ecx       ; divisor_hi
   mov  edi, ecx            ; Save divisor_hi.
   shr  edx, 1              ; Shift both
   rcr  eax, 1              ;  divisor and
   ror  edi, 1              ;  and dividend
   rcr  ebx, 1              ;  right by 1 bit.
   bsr  ecx, ecx            ; ECX = number of remaining shifts
   shrd ebx, edi, cl        ; Scale down divisor and
   shrd eax, edx, cl        ;  dividend such that divisor is
   shr  edx, cl             ;  less than 2^32 (that is, fits in EBX).
   rol  edi, 1              ; Restore original divisor_hi.
   div  ebx                 ; Compute quotient.
   mov  ebx, [esp]          ; dividend_lo
   mov  ecx, eax            ; Save quotient.
   imul edi, eax            ; quotient * divisor high word (??low only)
   mul  DWORD PTR [esp+4]   ; quotient * divisor low word
   add  edx, edi            ; EDX:EAX = quotient * divisor
   sub  ebx, eax            ; dividend_lo - (quot.*divisor)_lo
   mov  ecx, [esp+8]        ; dividend_hi
   sbb  ecx, edx            ; Subtract divisor * quot. from dividend.
   sbb  eax, eax            ; remainder < 0 ? 0xffffffff : 0
   mov  edx, [esp+12]       ; divisor_hi
   and  edx, eax            ; remainder < 0 ? divisor_hi : 0
   and  eax, [esp+4]        ; remainder < 0 ? divisor_lo : 0
   add  eax, ebx            ; remainder_lo
   add  edx, ecx            ; remainder_hi
   add  esp, 16             ; Remove local variables.

sr_makesign:
   xor eax, esi   ; If (remainder < 0),
   xor edx, esi   ;  compute 1's complement of result.
   sub eax, esi   ; If (remainder < 0),
   sbb edx, esi   ;  compute 2's complement of result.
   pop edi        ; Restore EDI as per calling convention.
   pop esi        ; Restore ESI as per calling convention.
   pop ebx        ; Restore EBX as per calling convention.
   ret            ; Done, return to caller.

9.6 Derivation of Algorithm, Multiplier, and Shift 
Factor for Integer Division by Constants

The following examples illustrate the derivation of algorithm, multiplier and shift factor for signed 
and unsigned integer division.
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Unsigned Integer Division
The utility udiv.exe was compiled from the code shown in this section. The utilities provided in this 
document are for reference only and are not supported by AMD.

The following code derives the multiplier value used when performing integer division by constants. 
The code works for unsigned integer division and for odd divisors between 1 and 231 – 1, inclusive. 
For divisors of the form d = d' * 2n, the multiplier is the same as for d' and the shift factor is s + n.

Example

/* This program determines the algorithm (a), multiplier (m), and
    shift factor (s) to be used to accomplish *unsigned* division by
    a constant divisor. Compile with MSVC.
*/

#include <stdio.h>

typedef unsigned __int64 U64;
typedef unsigned long    U32;

U32 log2(U32 i)
{
   U32 t = 0;
   i = i >> 1;
   while (i) {
      i = i >> 1;
      t++;
   }
   return(t);
}

U32 res1, res2;
U32 d, l, s, m, a, r, n, t;
U64 m_low, m_high, j, k;

int main (void)
{
   fprintf(stderr, "\n");
   fprintf(stderr, "Unsigned division by constant\n");
   fprintf(stderr, "=============================\n\n");
   fprintf(stderr, "enter divisor: ");
   scanf("%lu", &d);
   printf("\n");
   if (d == 0) goto printed_code;

   if (d >= 0x80000000UL) {
      printf("; dividend: register or memory location\n");
      printf("\n");
      printf("CMP    dividend, 0%08lXh\n", d);
      printf("MOV    EDX, 0\n");
      printf("SBB    EDX, -1\n");
      printf("\n");
      printf("; quotient now in EDX\n");
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      goto printed_code;
   }

   /* Reduce divisor until it becomes odd. */

   n = 0;
   t = d;
   while (!(t & 1)) {
      t >>= 1;
      n++;
   }

   if (t == 1) {
      if (n == 0) {
         printf("; dividend: register or memory location\n");
         printf("\n");
         printf("MOV    EDX, dividend\n", n);
         printf("\n");
         printf("; quotient now in EDX\n");
      }
      else {
         printf("; dividend: register or memory location\n");
         printf("\n");
         printf("SHR    dividend, %d\n", n);
         printf("\n");
         printf("; quotient replaced dividend\n");
      }
      goto printed_code;
   }

   /* Generate m, s for algorithm 0. Based on: Granlund, T.; Montgomery,
      P.L.: "Division by Invariant Integers using Multiplication."
      SIGPLAN Notices, Vol. 29, June 1994, page 61.
   */

   l = log2(t) + 1;
   j = (((U64)(0xffffffff)) % ((U64)(t)));
   k = (((U64)(1)) << (32 + l)) / ((U64)(0xffffffff - j));
   m_low = (((U64)(1)) << (32 + l)) / t;
   m_high = ((((U64)(1)) << (32 + l)) + k) / t;
   while (((m_low >> 1) < (m_high >> 1)) && (l > 0)) {
      m_low = m_low >> 1;
      m_high = m_high >> 1;
      l = l - 1;
   }
   if ((m_high >> 32) == 0) {
      m = ((U32)(m_high));
      s = l;
      a = 0;
   }
      /* Generate m and s for algorithm 1. Based on: Magenheimer, D.J.; et al:
      "Integer Multiplication and Division on the HP Precision Architecture."
      IEEE Transactions on Computers, Vol. 37, No. 8, August 1988, page 980.*/
   else {
      s = log2(t);
      m_low = (((U64)(1)) << (32 + s)) / ((U64)(t));
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      r = ((U32)((((U64)(1)) << (32 + s)) % ((U64)(t))));
      m = (r < ((t >> 1) + 1)) ? ((U32)(m_low)) : ((U32)(m_low)) + 1;
      a = 1;
   }
      /* Reduce multiplier for either algorithm to smallest possible.*/
  while (!(m & 1)) {
      m = m >> 1;
      s--;
   }

   /* Adjust multiplier for reduction of even divisors. */

   s += n;

   if (a) {
      printf("; dividend: register other than EAX or memory location\n");
      printf("\n");
      printf("MOV    EAX, 0%08lXh\n", m);
      printf("MUL    dividend\n");
      printf("ADD    EAX, 0%08lXh\n", m);
      printf("ADC    EDX, 0\n");
      if (s) printf("SHR    EDX, %d\n", s);
      printf("\n");
      printf("; quotient now in EDX\n");
   }
   else {
      printf("; dividend: register other than EAX or memory location\n");
      printf("\n");
      printf("MOV    EAX, 0%08lXh\n", m);
      printf("MUL    dividend\n");
      if (s) printf("SHR    EDX, %d\n", s);
      printf("\n");
      printf("; quotient now in EDX\n");
   }

printed_code:

   fprintf(stderr, "\n");
   exit(0);

   return(0);
}

Signed Integer Division
The utility sdiv.exe was compiled using the following code. The utilities provided in this document 
are for reference only and are not supported by AMD.

Example

/* This program determines the algorithm (a), multiplier (m), and
    shift factor (s) to be used to accomplish *signed* division by
    a constant divisor. Compile with MSVC.
*/
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#include <stdio.h>

typedef unsigned __int64 U64;
typedef unsigned long    U32;

U32 log2(U32 i)
{
   U32 t = 0;
   i = i >> 1;
   while (i) {
      i = i >> 1;
      t++;
   }
   return(t);
}

long e;
U32 res1, res2;
U32 oa, os, om;
U32 d, l, s, m, a, r, t;
U64 m_low, m_high, j, k;

int main(void)

{
   fprintf(stderr, "\n");
   fprintf(stderr, "Signed division by constant\n");
   fprintf(stderr, "===========================\n\n");

   fprintf(stderr, "enter divisor: ");
   scanf("%ld", &d);
   fprintf(stderr, "\n");

   e = d;
   d = labs(d);

   if (d == 0) goto printed_code;

   if (e == (-1)) {
      printf("; dividend: register or memory location\n");
      printf("\n");
      printf("NEG    dividend\n");
      printf("\n");
      printf("; quotient replaced dividend\n");
      goto printed_code;
   }
   if (d == 2) {
      printf("; dividend expected in EAX\n");
      printf("\n");
      printf("CMP    EAX, 080000000h\n");
      printf("SBB    EAX, -1\n");
      printf("SAR    EAX, 1\n");
      if (e < 0) printf("NEG    EAX\n");
      printf("\n");
      printf("; quotient now in EAX\n");
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      goto printed_code;
   }

   if (!(d & (d - 1))) {
      printf("; dividend expected in EAX\n");
      printf("\n");
      printf("CDQ\n");
      printf("AND    EDX, 0%08lXh\n", (d-1));
      printf("ADD    EAX, EDX\n");
      if (log2(d)) printf("SAR    EAX, %d\n", log2(d));
      if (e < 0)   printf("NEG    EAX\n");
      printf("\n");
      printf("; quotient now in EAX\n");
      goto printed_code;
   }

   /* Determine algorithm (a), multiplier (m), and shift factor (s) for 32-bit
      signed integer division. Based on: Granlund, T.; Montgomery, P.L.: 
      "Division by Invariant Integers using Multiplication". SIGPLAN Notices, 
      Vol. 29, June 1994, page 61.
   */

   l = log2(d);
   j = (((U64)(0x80000000)) % ((U64)(d)));
   k = (((U64)(1)) << (32 + l)) / ((U64)(0x80000000 - j));
   m_low = (((U64)(1)) << (32 + l)) / d;
   m_high = ((((U64)(1)) << (32 + l)) +  k) / d;

   while (((m_low >> 1) < (m_high >> 1)) && (l > 0)) {
      m_low  = m_low  >> 1;
      m_high = m_high >> 1;
      l = l - 1;
   }
   m = ((U32)(m_high));
   s = l;
   a = (m_high >> 31) ? 1 : 0;

   if (a) {
      printf("; dividend: memory location or register other than EAX or EDX\n");
      printf("\n");
      printf("MOV    EAX, 0%08LXh\n", m);
      printf("IMUL   dividend\n");
      printf("MOV    EAX, dividend\n");
      printf("ADD    EDX, EAX\n");
      if (s) printf("SAR    EDX, %d\n", s);
      printf("SHR    EAX, 31\n");
      printf("ADD    EDX, EAX\n");
      if (e < 0) printf("NEG    EDX\n");
      printf("\n");
      printf("; quotient now in EDX\n");
   }
   else {
      printf("; dividend: memory location of register other than EAX or EDX\n");
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      printf("\n");
      printf("MOV    EAX, 0%08LXh\n", m);
      printf("IMUL   dividend\n");
      printf("MOV    EAX, dividend\n");
      if (s) printf("SAR    EDX, %d\n", s);
      printf("SHR    EAX, 31\n");
      printf("ADD    EDX, EAX\n");
      if (e < 0) printf("NEG    EDX\n");
      printf("\n");
      printf("; quotient now in EDX\n");
   }

printed_code:

   fprintf(stderr, "\n");
   exit(0);
}

9.7 Optimizing Integer Division

Optimization
For all data types, except in 8-bit division, making the absolute value of the most significant word (in 
DX/EDX/RDX) of the dividend all 0s for the DIV instruction or all 0s or all 1s for the IDIV 
instruction lowers the latency of integer division. If this is not possible, then use a smaller data type 
for integer division.

Application
This optimization applies to:

• 32-bit software

• 64-bit software

Rationale
Integer division latency is dependent on the operand size. These latency numbers could go down even 
lower, depending on the number of leading zero bits in the absolute value of the dividend. Table 4 
provides details about the latency of any particular instance of a DIV/IDIV instruction.

When integer division constitutes a substantial computational load, it may be beneficial to check 
whether the most significant word of the absolute value of the dividend in DX/EDX/RDX can be set 
to all 0s for DIV or to all 0s or all 1s for IDIV. If that is not possible, then using a smaller division size 
will help to lower the latency.

In any case, assembly language output generated by high-level language compilers should be verified 
that the desired code is generated. When dividing by a constant, if possible, substitute the division 
with a multiplication. (See “Replacing Division with Multiplication” on page 139 for more details.)
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9.8 Efficient Implementation of Population Count and 
Leading-Zero Count

Optimization
Use the POPCNT instruction to implement a population count and use LZCNT to perform a leading-
zero count operation.

Application
This optimization applies to:

• 32-bit software

• 64-bit software

Rationale
A population count determines the number of set bits in a bit string. The POPCNT instruction, a new 
instruction for AMD Family 15h processors, is the preferred way to implement a population count.

A leading-zero count is an operation that counts the number of leading bits in the input operand that 
are cleared to zero. Counting starts downward from the most significant bit and stops at the highest bit 

Table 4. DIV/IDIV Latencies

Divisor
Absolute Value

of
Dividend

Latency

DIV IDIV

8 Bits Reg Quotient Latency = 20, 
Remainder Latency = Quotient 
Latency + 1, 41 cycles for all.

Quotient Latency = 20, 
Remainder Latency = Quotient 
Latency + 1, 41 cycles for all.

Mem NA NA
16, 32, 64 Bits 0 NA NA

16 Bits > 0 and < 216 Quotient Latency = 8 + position 
of quotient MSB.  Remainder 
Latency =  Quotient Latency + 
1.  Max Quotient Latencies: 23 
for 16-bit, 39 for 32-bit, 71 for 
64-bit 

Quotient Latency = 8 + position 
of quotient MSB.  Remainder 
Latency =  Quotient Latency + 
1.  Max Quotient Latencies: 23 
for 16-bit, 39 for 32-bit, 71 for 
64-bit

32 Bits > 0 and < 232

64 Bits > 0 and < 264

16 Bits ≥  216 NA NA

32 Bits ≥ 232 NA NA

64 Bits ≥ 264 NA NA

Note: MSB—Most significant bit.
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which is one or when the least significant bit is encountered.  LZCNT is a new instruction for 
AMD Family 15h processors that implement this function.

The POPCNT and LZCNT instructions can count the bits in a 32-bit operand in 32-bit mode or a 64-
bit operand in 64-bit mode.

9.9 Optimizing with BMI and TBM Instructions

Optimization
Use bit manipulation (BMI) and trailing bit manipulation instructions (TBM) where applicable to 
simplify bit manipulation operations.

Rationale
The BMI and TBM instruction sets allow common bit manipulation operations to be executed in 
fewer instructions. This can save cycles, reduce code size, and reduce usage of temporary registers. 
For more details refer to the “AMD 64 Architecture Programmer's Manual Documentation Updates 
for AMD Family 15h Processors”, order No. 45988.

Examples
Many common bit-manipulation operations can be simplified using these instructions. For each of the 
examples below, we show both a legacy implementation using general purpose instructions, and a 
preferred implementation using BMI/TBM instructions.

The first few examples illustrate simple logical operations that depend on identifying bits that are set 
or clear.

Example 1: Bitwise AND Not 

Take the bitwise AND of a register (ebx) with the negation of another register (ecx).

Original
not eax, ebx 
and ecx, eax, ebx //eax is a temporary register

Preferred
andn edx, ecx, ebx //avoids use of temp register eax

Example 2: Isolate lowest set bit

Clear all bits in source (ebx) except least significant bit. Write result to destination (edx).

Original
neg ecx, ebx //ecx is a temp register



164 Integer Optimizations Chapter 9

47414 Rev. 3.06 January 2012Software Optimization Guide for AMD Family 15h Processors

and edx, ecx, ebx

Preferred
blsi edx, ebx //avoids use of temp register ecx

Example 3: Isolate lowest clear bit

Find the least significant zero bit in the source operand (ebx), set all other bits to 1 and write the result 
to the destination (edx).

Original 
add ecx, ebx, 1
not ecx, ecx
or edx, ecx, ebx

Preferred
blci edx, ebx

Example 4: Inverse Mask From Trailing Ones

Find the least significant zero bit in the source operand (ebx), clear all bits below that bit to 0, set all 
other bits to 1 (including the found bit) and write the result to the destination (esi).

Original
add ecx, ebx, 1 
not edx, ebx 
or esi, ecx, edx //ecx and edx are temp registers.

Preferred
t1mskc esi, ebx //eliminates the need for 2 temp registers ecx and edx

Example 5: Fill From Lowest Clear Bit

Find the least significant zero bit in the source operand (eax), clear all bits below that bit to 0 and 
write the result to the destination (ecx). If the source operand has no zero bit, write the destination 
with all zeroes.

Original
add ebx, eax, 1
and ecx, ebx, eax //ebx is a temp register

Preferred
blcfill ecx, eax //eliminates the need for temp register ebx
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Example 6: Fill From Lowest Set Bit

Find the least significant one bit in the source operand, set all bits below that bit to 1 and write the 
result to the destination. If there is no one bit in the source operand, write the destination with all 
ones.

Original
sub ebx, eax, 1
or ecx, ebx, eax //ebx is a temp register

Preferred
blsfill ecx, eax //avoids use of temp register ebx

These instructions can also be used for bit extraction and counting the number of leading or trailing 
zeroes in a register.

Example 7. Bitfield extraction

Extract a range of contiguous bits from the source operand.

Below is sample C++ code for implementing bitfield extraction.

/* Extract bits of source from start_index to start_index+length-1 */
int bextr(int source, int start_index, int length) {
  source = source >> start_index;
  int mask = 0;
  int ctr = 1;
  for(int i = 0; i < length; i++) {
    mask += ctr;
    ctr = ctr*2;
  }
  return source & mask;
}

Pseudoassembly (original)

Prototype:
;
;    int bextr(int source, int start_index, int length) 
;
;
;
; parameters are passed in by Microsoft cl compiler as:
; rcx - int source 
; rdx - int start_index 
; r8 -  int length 
;
; Return value will be stored in rax
;.386
;.MODEL flat, stdcall
.code
public bextr
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bextr proc
      mov eax, ecx ; eax = source
      mov ecx, edx 
      shr eax,cl
      xor r9, r9 ;r9 = mask, r10 = ctr, r11 = i
      xor r10, r10
      xor r11, r11
      add r10, 1  
label1:
   
      add r9, r10 ;mask = mask + ctr
      shl r10, 1  ; ctr = ctr * 2
      inc r11
      cmp r11, r8
      jl label1
      and rax, r9 ;src = src & mask 
      ret
bextr endp

end 

Psuedoassembly (optimized)
;
; Bitfield Extraction using the BMI instruction bextr
;
;
; Prototype:
;
;    int bextr(int source, int start_index, int length) 
;
;
;
; parameters are passed in by Microsoft cl compiler as:
; rcx - int source 
; rdx - int start_index 
; r8 -  int length 
; 
; Return value will be stored in rax
;
;.386
;.MODEL flat, stdcall
.code
public bextr

bextr proc
      shl r8, 8
      or rdx r8 ; rdx = [length]:[start_index]
      bextr rax, rcx, rdx ; rax = bits start_index+length-1...start_index of 
source
      ret
bextr endp

end
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Chapter 10 Optimizing with SIMD Instructions

The 64-bit, 128-bit and 256-bit SIMD instructions should be used to encode floating-point and 
packed integer operations.

• The SIMD instructions use a flat register file rather than the stack register file used by x87 
floating-point instructions. This allows arbitrary sequences of operations to map more efficiently 
to the instruction set.

• AMD Family 15h processors with 128-bit multipliers and adders achieve better throughput using 
SIMD instructions. (Double precision throughput is 2× and single precision is 4× the throughput 
of x87.)

• SIMD instructions work well in both 32-bit and 64-bit threads.

• In 64-bit mode, there are twice as many XMM registers available as in 32-bit mode, however, the 
number of x87 registers is the same in both 32-bit mode and 64-bit mode.

The SIMD instructions provide a theoretical single-precision peak throughput of four additions and 
four multiplications per clock cycle, whereas x87 instructions can only sustain one addition and one 
multiplication per clock cycle. The double-precision peak throughput of the SIMD instructions is two 
additions and two multiplications per clock cycle.

This chapter covers the following topics:

Topic Page
Ensure All Packed Floating-Point Data are Aligned 168
Explicit Load Instructions 168
Unaligned and Aligned Data Access 169
Use SIMD Instructions to Construct Fast Block-Copy Routines 170
Using SIMD Instructions for Fast Square Roots and Divisions 171
Use XOR Operations to Negate Operands of SIMD Instructions 174
Clearing SIMD Registers with XOR Instructions 175
Finding the Floating-Point Absolute Value of Operands of SIMD Instructions 176
Accumulating Single-Precision Floating-Point Numbers Using SIMD Instructions 176
Complex-Number Arithmetic Using AVX Instructions 178
Optimized 4 X 4 Matrix Multiplication on 4 X 1 Column Vector Routines 181
Floating-Point-to-Integer Conversion 184
Reuse of Dead Registers 184
Floating-Point Scalar Conversions 185
Move/Compute Optimization 187
Using SIMD Instructions for Rounding 188
Using SIMD Instructions for Floating-Point Comparisons 188
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10.1 Ensure All Packed Floating-Point Data are Aligned

Optimization
Align all packed floating-point data on 16-byte boundaries. 

Application
This optimization applies to:

• 32-bit software

• 64-bit software

Rationale
Misaligned memory accesses reduce the available memory bandwidth and SIMD instructions have 
shorter latencies when operating on aligned memory operands.

Aligning data on 16-byte boundaries reduces the possibility of stalling floating-point addition and 
multiplication instructions that are dependent on the load data. See also section 10.3, “Unaligned and 
Aligned Data Access” on page 169.

10.2 Explicit Load Instructions

Optimization
Use VMOVSD xmm1, mem64 when loading a scalar floating-point double-precision value from memory. 
Use VMOVSS xmm1, mem32 when loading a scalar floating-point single-precision value from memory.

Application
This optimization applies to:

• 32-bit software

• 64-bit software

Rationale
The VMOVSD xmm1, mem64 instruction is more efficient than VMOVLPD xmm1, mem64 on an 
AMD Family 15h processor, since it modifies the entire XMM register, thus breaking the dependency 
chain on the high-order bits of the register. 

The VMOVSS xmm1, mem32 instruction zeroes the unaffected remaining bits of the XMM register and 
breaks any dependency chain. It also assures that the upper half of the XMM register contains a 
normal floating-point single-precision value.
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10.3 Unaligned and Aligned Data Access

Optimization
When data alignment cannot be guaranteed, use VMOVUPx or VMOVDQU for loads and stores on 
AMD Family 15h processors.

Otherwise, when data alignment is guaranteed, always use VMOVAPx or VMOVDQA.

Application
This optimization applies to:

• 32-bit software

• 64-bit software

Rationale
The store data path on Family 15h is 128-bits wide. Stores are written to both the L1 Data Cache and 
the L2 via the CU module into the WCC (Write Combining Cache). Writes to the Data cache which 
are unaligned in an "address" are written in two cycles. If consecutive unaligned addressed 128-bit 
loads are written they can be coalesced such that the 64-bit portions of 128-bit writes which were 
unaligned can be merged and written 128-bits at a time, removing most the stall penalties. This is 
performed in the Store Coalescing Buffer (SCB). A similar operation is performed for those writes 
which go to the L2 via the CU and WCC. There, the writes are coalesced in the Coalescing Buffer 
(CB). 128-bit stores are preferable because they can be dispatched in 1 uop and they only require one 
store queue entry, thus putting less pressure on resources during execution.

10.4 Moving Data Between General-Purpose and 
XMM/YMM Registers

Optimization
When moving data from a GPR to an XMM register, use separate store and load instructions to move 
the data first from the source register to a temporary location in memory and then from memory into 
the destination register, taking the memory latency into account when scheduling both stages of the 
load-store sequence.

When moving data from an XMM register to a general-purpose register, use the VMOVD instruction.

Whenever possible, use loads and stores of the same data length. (See 6.3, ‘Store-to-Load Forwarding 
Restrictions” on page 98 for more information.)
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Application
This optimization applies to:

• 32-bit software

• 64-bit software

Rationale
When a GPR is the source to the VMOVD instruction, VMOVD is a higher-latency DirectPath 
Double instruction; compared to the low-latency DirectPath Single instructions used first to store the 
contents of the GPR to memory and then to load this value into an XMM register. 

When a GPR is the destination of the VMOVD instruction, VMOVD is a DirectPath Single 
instruction.

10.5 Use SIMD Instructions to Construct Fast Block-
Copy Routines

Optimization
Use XMM registers instead of general purpose registers to copy blocks of data that reside in cache. 

Application
This optimization applies to:

• 64-bit software

Rationale
SIMD loads and stores can read and write 16 bytes in a single clock cycle, while a SIMD store can 
write 16 bytes in two cycles. VMOVDQU can safely access 16-byte data regardless of alignment, 
with performance equal to VMOVDQA when data is actually 16-byte aligned, so use VMOVDQU 
and align the destination and/or the source to 16-byte boundaries when possible.

Example
The following code illustrates an implementation of an optimized memory block copy using 128 bit 
XMM registers. This code uses a partially unrolled loop with an unroll factor of two to hide the 
execution latencies of the pointer/counter arithmetic and branch instructions.

; rsi = ptr to destination, must be 16-byte aligned
    ; rdi = ptr to source, must be 16-byte aligned
    ; rdx = count, make sure it's at least 32 bytes and 
    ;              is a function of sizeof(dest type) * len
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    shrq rdx, 5 ; we move 32 bytes per loop
    jz SSE_done
    align 16 ; align loop top for best performance
SSE_loop:
    vmovdqa xmm0, [rdi]
    vmovdqa xmm1, [rdi + 16]
    add rdi, 32
    vmovdqa [rsi],      xmm0, 
    vmovdqa [rsi + 16], xmm1, 
    add rsi, 32
    dec rdx
    jnz SSE_loop
SSE_done:
    ; (move any residual bytes)

10.6 Using SIMD Instructions for Fast Square Roots 
and Divisions

Optimization
Use SIMD vectorized square root (VSQRTSS/VSQRTPS) and reciprocal (VRCPSS/VRCPPS) 
instructions to calculate square roots and divisions of single-precision numbers.

Application
This optimization applies to:

• 32-bit software

• 64-bit software

Rationale
The calculation of reciprocal square root and reciprocation of single-precision numbers are often used 
in multimedia applications. These SIMD instructions can be used for such operations when a slight 
inaccuracy is acceptable.

Although these instructions return their results with a maximum error of 2-11, they can be used with 
the Newton-Raphson method to obtain more accurate results. 

For square roots accurate to 2.5 ULPs, the following algorithm is obtained after one Newton-Raphson 
iteration: 
y = 0.5 * a * x * (3.0 - a * x * x) 

Where x is the initial approximation of the reciprocal of the square root of a and y, the square root of 
a. 



172 Optimizing with SIMD Instructions Chapter 10

47414 Rev. 3.06 January 2012Software Optimization Guide for AMD Family 15h Processors

For divisions accurate to 1.5 ULPs, the following algorithm is obtained after one Newton-Raphson 
iteration: 
y = a * x * (2.0 - b * x) 

Where x is the initial approximation of the reciprocal of b and y, the quotient of a divided by b. 

Although more Newton-Raphson iterations could be used to increase accuracy, the execution time 
would be longer than the equivalent instructions. This implementation of the Newton-Raphson 
technique is not 100% compliant to the IEEE-754 specification, but its results are acceptable in most 
applications.

Example
The following functions calculate the square root:

#include <xmmintrin.h>
/* nr_sqrtf: return scalar square root accurate to 2.5ulps.

    This approximation assumes finite math; never returns denormals, but zero;
    does not return the expected values after C89; 
    is not compliant with IEEE754 semantics.

    Note: AVX code can be generated using compiler flags without modification to 
          this example. */

float nr_sqrtf (float a)
{
  __m128 x0, x1, x2, x3, x4, x5, m;
  float y;

  m = _mm_cmpneq_ss (_mm_set_ss (a), _mm_setzero_ps ()); // m = (a != 0.0? T: F)

  x0 = _mm_rsqrt_ss (_mm_set_ss (a));                    // x0 = initial estimate
  x1 = _mm_and_ps (m, x0);                               // x1 = m & x0
  x2 = _mm_mul_ss (_mm_set_ss (a), x1);                  // x2 = a * x1
  x3 = _mm_mul_ss (_mm_set_ss (0.5F), x2);               // x3 = 0.5 * x2
  x4 = _mm_mul_ss (x1, x2);                              // x4 = x1 * x2
  x5 = _mm_sub_ss (_mm_set_ss (3.0F), x4);               // x5 = 3.0 - x4

  _mm_store_ss (&y, _mm_mul_ss (x3, x5));                // y = x3 * x5
  return (y);                                            // y = sqrtf (a)
}

/* nr_sqrtvf: return vector square root accurate to 2.5ulps.

    This approximation assumes finite math; never returns denormals, but zero;
    does not return the expected values after C89; 
    is not compliant with IEEE754 semantics. 

    Note: AVX code can be generated using compiler flags without modification to 
          this example. */

__m128 nr_sqrtvf (__m128 a)
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{
  __m128 x0, x1, x2, x3, x4, x5, m, y;

  m = _mm_cmpneq_ps (a, _mm_setzero_ps ()); // m = (a != 0.0? T: F)

  x0 = _mm_rsqrt_ps (a);                    // x0 = initial estimate
  x1 = _mm_and_ps (m, x0);                  // x1 = m & x0
  x2 = _mm_mul_ps (a, x1);                  // x2 = a * x1
  x3 = _mm_mul_ps (_mm_set1_ps (0.5F), x2); // x3 = 0.5 * x2
  x4 = _mm_mul_ps (x1, x2);                 // x4 = x1 * x2
  x5 = _mm_sub_ps (_mm_set1_ps (3.0F), x4); // x5 = 3.0 - x4

  y = _mm_mul_ps (x3, x5);                  // y = x3 * x5
  return (y);                               // y = sqrtf (a)
}

These functions return the quotient: 

#include <xmmintrin.h>

/* nr_divf: return scalar quotient accurate to 1.5ulps.

    This approximation assumes finite math; never returns denormals, but zero;
    does not return the expected values after C89; 
    is not compliant with IEEE754 semantics. 

    Note: AVX code can be generated using compiler flags without modification to 
          this example. */

float nr_divf (float a, float b)
{
  __m128 x0, x1, x2, x3;
  float y;

  x0 = _mm_rcp_ss (_mm_set_ss (b));        // x0 = initial estimate
  x1 = _mm_mul_ss (_mm_set_ss (a), x0);    // x1 = a * x0
  x2 = _mm_mul_ss (_mm_set_ss (b), x0);    // x2 = b * x0
  x3 = _mm_sub_ss (_mm_set_ss (2.0F), x2); // x3 = 2 - x2
 
  _mm_store_ss (&y, _mm_mul_ss (x1, x3));  // y = x1 * x3
  return (y);                              // y = a / b
}

/* nr_divvf: return vector quotient accurate to 1.5ulps.

    This approximation assumes finite math; never returns denormals, but zero;
    does not return the expected values after C89; 
    is not compliant with IEEE754 semantics. 

    Note: AVX code can be generated using compiler flags without modification to 
          this example. */

__m128 nr_divf (__m128 a, __m128 b)
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{
  __m128 x0, x1, x2, x3, y;

  x0 = _mm_rcp_ps (b);                      // x0 = initial estimate
  x1 = _mm_mul_ps (a, x0);                  // x1 = a * x0
  x2 = _mm_mul_ps (b, x0);                  // x2 = b * x0
  x3 = _mm_sub_ps (_mm_set1_ps (2.0F), x2); // x3 = 2 - x2
 
  y = _mm_mul_ps (x1, x3);                  // y = x1 * x3
  return (y);                               // y = a / b
}

10.7 Use XOR Operations to Negate Operands of SIMD 
Instructions

Optimization
For AMD Family 15h processors, use instructions that perform XOR operations (VXORPS, and 
VXORPD) instead of multiplication instructions to change the sign bits of operands of SIMD 
instructions.

Application
This optimization applies to:

• 32-bit software

• 64-bit software

Rationale
On the AMD Family 15h processors, using XOR-type instructions allows for more parallelism, since 
these instructions can execute in either FPMAL pipes 2 or 3 of the floating-point unit. Also, the 
latency of the VMULPS or VMULPD instruction is longer than the latency of VXORPS or VXORPD 
(see Appendix B, “Instruction Latencies”).

Single Precision

This example shows how to toggle the sign bit of four floating-point values using single-precision 
SIMD instructions: 

signmask DQ 8000000080000000h,8000000080000000h
vxorps xmm0, xmm0, [signmask] ; Toggle sign bits of all four floats.
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Double Precision

The following example shows how to toggle the sign bit of two doubles using double-precision AVX 
instructions:

signmask DQ 8000000000000000h,8000000000000000h
vxorpd xmm0, xmm0, [signmask]   ; Toggle sign bit of both doubles.

10.8 Clearing SIMD Registers with XOR Instructions

Optimization
Use instructions that perform XOR operations (VPXOR, VXORPS, and VXORPD) to clear all the 
bits in XMM/YMM registers. 

Application
This optimization applies to:

• 32-bit software

• 64-bit software

Rationale
The VXORPS and VXORPD instructions are more efficient than loading a zero value into an  XMM 
register from memory and then storing it (see Appendix B, “Instruction Latencies”). In addition, the 
processor “knows” that the VXORPS and VXORPD instructions that use the same register for both 
source and destination do not have a real dependency on the previous contents of the register, and 
thus, do not have to wait before completing.

Examples
The following examples illustrate how to clear the bits in a register using the different exclusive-OR 
instructions:

; AVX packed single precision:
vxorps xmm0, xmm0, xmm0   ; Clear the XMM0 register.

; AVX packed double precision:
vxorpd xmm0, xmm0, xmm0   ; Clear the XMM0 register.
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10.9 Finding the Floating-Point Absolute Value of 
Operands of SIMD Instructions

Optimization
Use instructions that perform AND operations ((V)ANDPS, and (V)ANDPD) to determine the 
absolute value of floating-point operands of SIMD instructions.

Application
This optimization applies to:

• 32-bit software

• 64-bit software

Examples
The following examples illustrate how to clear the sign bits. See Appendix C for latencies of the 
ANDPS and ANDPD instructions:

; SSE
absmask DQ 7FFFFFFF7FFFFFFFh,7FFFFFFF7FFFFFFFh
andps xmm0, [absmask]   ; Clear the sign bits of all four floats in XMM0.
; SSE2
absmask DQ 7FFFFFFFFFFFFFFFh,7FFFFFFFFFFFFFFFh
andpd xmm0, [absmask]   ; Clear the sign bits of both doubles in XMM0.

10.10 Accumulating Single-Precision Floating-Point 
Numbers Using SIMD Instructions

Optimization
Careful selection of SIMD instructions based on efficient data organization can lead to more 
economical code.

Application
This optimization applies to:

• 32-bit software

• 64-bit software
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Rationale
SIMD vectorized multiplication and addition instructions are useful for carrying out such operations 
as complex-number multiplication, 4 x 4 matrix multiplication, and dot products.

Examples
The following example uses SIMD instructions. Four floating-point values are loaded into four XMM 
registers, XMM4–XMM7. These values are then rearranged and added, so as to accumulate the sum 
of each XMM register into a float in XMM1.

;----------------------------------------------------------------------
; The instructions below take the 4 floats in each XMM register below:
; xmm4 = [d,c,b,a]
; xmm5 = [D,C,B,A]
; xmm6 = [h,g,f,e]
; xmm7 = [H,G,F,E]
;
; and arranges them to look like:
; xmm4 = [E,e,A,a]
; xmm1 = [F,f,B,b]
; xmm2 = [G,g,C,c]
; xmm3 = [H,h,D,d]
vmovaps xmm3, xmm4 ; xmm3 | [d,c,b,a]
vmovaps xmm0, xmm5 ; xmm0 | [D,C,B,A]
vunpcklps xmm4, xmm4, xmm6 ; xmm4 | [f,b,e,a]
vunpckhps xmm3, xmm3, xmm6 ; xmm3 | [h,d,g,c]
vmovaps xmm1, xmm4 ; xmm1 | [f,b,e,a]
vmovaps xmm2, xmm3 ; xmm2 | [h,d,g,c]
vunpcklps xmm5, xmm5, xmm7 ; xmm5 | [F,B,E,A]
vunpckhps xmm0, xmm0, xmm7 ; xmm0 | [H,D,G,C]
vunpcklps xmm4, xmm4, xmm5 ; xmm4 | [E,e,A,a]
vunpckhps xmm1, xmm1, xmm5 ; xmm1 | [F,f,B,b]
vunpcklps xmm3, xmm3, xmm0 ; xmm3 | [G,g,C,c]
vunpckhps xmm2, xmm2, xmm0 ; xmm2 | [H,h,D,d]
; Now if we compute the sum of these registers, we get the dot-product
; of the first row of A with vector X:
;
; a+b+c+d
;
; in the lower DWORD of the resultant XMM register. The dot-product of the
; second row is stored in the second DWORD and so on, such that:
;
; xmm1 = [V+X+Y+Z,v+x+y+z,A+B+C+D,a+b+c+d]
vaddps xmm1, xmm1, xmm4 ; xmm1 | [E+F,e+f,A+B,a+b]
vaddps xmm3, xmm3, xmm2 ; xmm3 | [G+H,g+h,C+D,c+d]
vaddps xmm1, xmm1, xmm3 ; xmm1 | [E+F+G+H,e+f+g+h,A+B+C+D,a+b+c+d]
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10.11 Complex-Number Arithmetic Using AVX 
Instructions

Optimization
Use vectorizing AVX instructions to perform complex number calculations.

Application
This optimization applies to:

• 64-bit software

Rationale
Complex numbers have a “real” part and an “imaginary” part (where the imaginary part is denoted by 
the letter i). For example, the complex number z1 might have a real part equal to 4 and an imaginary 
part equal to 3, written as 4 + 3i. Multiplying and adding complex numbers is an integral part of many 
areas of mathematics. Complex number addition is illustrated here using two complex numbers, z1 
(4 + 3i) and z2 (5 + 2i):

z1 + z2 = (4 + 3i) + (5 + 2i) = [4+5] + [3+2]i = 9 + 5i

or:

sum.real = z1.real + z2.real
sum.imag = z1.imag + z2.imag

Complex number multiplication is illustrated below using the same two complex numbers:
z1 + z2 = (4 + 3i)(5 + 2i) = [4 × 5 - 3 × 2] + [3 × 5 + 4 × 2]i = 14 + 23i

or:

product.real = z1.real × z2.real - z1.imag × z2.imag
product.imag = z1.real × z2.imag + z1.imag × z2.real

Complex numbers can be stored as streams of two-element vectors, the two elements being the real 
and imaginary parts of the complex numbers. Addition of complex numbers can be achieved using 
vectorizing SIMD instructions, such as VADDPS and VADDPD. Multiplication of complex numbers 
is more involved, but AVX and FMA3/FMA4 instructions are available to perform exactly the 
operations required.

From the formulas for multiplication, the real and imaginary parts of one of the numbers must be 
interchanged, and, additionally, the products must be positively or negatively accumulated depending 
upon whether you are computing the imaginary or real portion of the product.

The following example uses AVX and FMA3/FMA4 instructions to illustrate complex multiplication 
of streams of complex numbers x[] and y[] stored in a product stream prod[]. For this example, 
assume that the sizes of x[] and y[] are even multiples of eight. If this assumption were not true, 
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extra code would be required to compute the remaining products. Another assumption is that x[], y[] 
and prod[] are aligned on 32 byte boundaries, as discussed in sections 6.2, “Natural Alignment of 
Data Objects” on page 97 and 10.3, “Unaligned and Aligned Data Access” on page 169.

Example

Complex Multiplication of Streams of Complex Numbers using AVX and FMA3/FMA4 
Instructions

; void cmplx_multiply_avx(float *x, float *y, int num_cmplx_elem, float *prod);
;
; TO ASSEMBLE INTO *.obj DO THE FOLLOWING:
; ml64.exe -c cmplx_multiply_avx.asm
;
;
; define local variable storage offsets
save_rdi equ 00h ;qword
save_rsi equ 08h ;qword
stack_size equ 018h
TEXT SEGMENT page 'CODE'
PUBLIC cmplx_multiply_avx
cmplx_multiply_avx proc frame
;==============================================================================
; INSTRUCTIONS BELOW SAVE THE REGISTER STATE WITH WHICH THIS ROUTINE WAS ENTERED
; REGISTERS RSI, and RSI ARE CONSIDERED VOLATILE AND ASSUMED TO BE CHANGED
; WHILE THE REGISTERS BELOW MUST BE PRESERVED IF THE USER IS CHANGING THEM
;==============================================================================
sub rsp,stack_size
mov QWORD PTR [rsp+save_rdi],rdi ; save rdi
mov QWORD PTR [rsp+save_rsi],rsi ; save rsi
;==============================================================================
; Parameters passed into routine according to the Microsoft AMD64 ABI:
; rcx = ->x
; rdx = ->y
; r8d = num_cmplx_elem
; r9 = ->prod
;==============================================================================
mov rsi, rcx ; rsi = ->x
mov rdi, rdx ; rdi = ->y
mov rcx, r8d ; rcx = num_cmplx_elem (zero extends the destination register)
;==============================================================================
; THE 6 ASM LINES BELOW OFFSET THE ADDRESS TO THE ARRAYS x[] AND y[] SUCH
; THAT THEY CAN BE ACCESSED IN THE MOST EFFICIENT MANNER WITH THE MINIMUM 
; NUMBER OF ADDRESS INCREMENTS
;==============================================================================
mov r8, rcx                       ; r8 = num_cmplx_elem
neg rcx                           ; rcx = -num_cmplx_elem
imul r8, 8                        ; r8 = 8 * num_cmplx_elem = # bytes in x[] and
                                  ; y[] to multiply
add rsi, r8                       ; rsi = -> to last element of x[] to multiply
add rdi, r8                       ; rdi = -> to last element of y[] to multiply
add r9, r8                        ; r9 = -> end of prod[] to calculate
;==============================================================================
; THIS LOOP MULTIPLIES 4 COMPLEX #s FROM "x[]" UPON 4 COMPLEX #s FROM "y[]"
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; AND RETURNS THE PRODUCT IN "prod[]".
;==============================================================================
ALIGN 32                          ; Align loop top address to a 32-byte boundary.
four_cmplx_prod_loop:
vmovaps ymm0, YMMWORD PTR [rsi+rcx*8] ; ymm0=[x3i,x3r,x2i,x2r,x1i,x1r,x0i,x0r]
vmovaps ymm1, YMMWORD PTR [rdi+rcx*8] ; ymm1=[y3i,y3r,y2i,y2r,y1i,y1r,y0i,y0r]
vmovshdup ymm2,ymm0                   ; ymm2=[x3i,x3i,x2i,x2i,x1i,x1i,x0i,x0i]
vmovsldup ymm0,ymm0                   ; ymm0=[x3r,x3r,x2r,x2r,x1r,x1r,x0r,x0r]
vshufps ymm3,ymm1,ymm1,0b1h           ; ymm3=[y3r,y3i,y2r,y2i,y1r,y1i,y0r,y0i]
vmulps ymm2, ymm2, ymm3               ; ymm2=[x3i*y3r,x3i*y3i,x2i*y2r,x2i*y2i,
                                      ;       x1i*y1r,x1i*y1i,x0i*y0r,x0i*y0i]
;==============================================================================
;USE FMA3 INSTRUCTION IF SYMBOL "FMA3" IS DEFINED, OTHERWISE USE FMA4 INSTRUCTION
;==============================================================================
ifdef FMA3      
vfmaddsub213ps ymm0,ymm1,ymm2         ; ymm0=[x3r*y3i+x3i*y3r,x3r*y3r-x3i*y3i,
else                                  ;       x2r*y2i+x2i*y2r,x2r*y2r-x2i*y2i,
vfmaddsubps ymm0,ymm0, ymm1,ymm2      ;       x1r*y1i+x1i*y1r,x1r*y1r-x1i*y1i,
endif                                 ;       x0r*y0i+x0i*y0r,x0r*y0r-x0i*y0i]

vmovntps YMMWORD PTR [r9+rcx*8], ymm0 ; Stream ymm0 to destination
add rcx, 4                            ; Update the counter/index
jnz four_cmplx_prod_loop
;==============================================================================
; INSTRUCTIONS BELOW RESTORE THE REGISTER STATE WITH WHICH THIS ROUTINE WAS
; ENTERED
; REGISTERS RDI, RSI ARE CONSIDERED VOLATILE AND ASSUMED TO BE CHANGED
; WHILE THE REGISTERS BELOW MUST BE PRESERVED IF THE USER IS CHANGING THEM
;==============================================================================
mov rdi, QWORD PTR [rsp+save_rdi] ; restore rdi
mov rsi, QWORD PTR [rsp+save_rsi] ; restore rsi
add rsp,stack_size
ret
.ENDPROLOG
cmplx_multiply_avx endp
TEXT ENDS
END

The example takes advantage of the FMA3 (vfmaddsub213ps) / FMA4 (vfmaddsubps) instructions to 
perform one of the multiplication steps, combining the subtraction for the real terms
(x.r*y.r - x.i*y.i) and the addition for imaginary terms (x.r*y.i + x.i*y.r).

The example also uses MOVNTPS instructions -- nontemporal writes to memory that stream data to 
main memory. These instructions increase throughput to memory and make more efficient use of the 
bandwidth provided by the processor and memory controller. Nontemporal writes, such as 
MOVNTPS and MOVNTDQ, should only be used on data that is not going to be accessed again in 
the near future. This is described in more detail in 6.5, “Prefetch and Streaming Instructions” on 
page 103.
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10.12 Optimized 4 X 4 Matrix Multiplication on 4 X 1 
Column Vector Routines

Optimization
Transpose the rotation matrix to eliminate the need to accumulate floating-point values in an XMM 
register.

Application
This optimization applies to:

• 32-bit software

• 64-bit software

Rationale
The multiplication of a 4 × 4 matrix with a 4 × 1 vector is commonly used in 3-D graphics for 
geometric transformation (translating, scaling, rotating, and applying perspective to 3-D points 
represented in homogeneous coordinates). Efficiency in single-precision matrix multiplication can be 
enhanced by use of SIMD instructions to increase throughput, but there are other general 
optimizations that can be implemented to further increase performance. The first optimization is the 
transposition of the rotation matrix such that column n of the matrix becomes row n and row m 
becomes column m. There are no SIMD instructions that accumulate the floats and doubles in a single 
XMM register; for this reason, the matrix must be transposed. If the rotation matrix is not transposed, 
then the dot-product of a row of the matrix with a column vector necessitates the accumulation of the 
four floating-point values in an XMM register. The multiplication on the column vector is illustrated 
here

               |r00 r01 r02 r03|        |r00 r10 r20 r30|   |v0|   |v'0|
tr(R) × v = tr |r10 r11 r12 r13| × v =  |r01 r11 r21 r31| × |v1| = |v'1|
               |r20 r21 r22 r23|        |r02 r12 r22 r32|   |v2|   |v'2|
               |r30 r31 r32 r33|        |r03 r13 r23 r33|   |v3|   |v'3|

         Step 0       Step 1       Step 2       Step 3
|v'0|   |r00 × v0|   |r01 × v1| + |r02 × v2| + |r03 × v3|
|v'1| = |r10 × v0| + |r11 × v1| + |r12 × v2| + |r13 × v3|
|v'2|   |r20 × v0|   |r21 × v1| + |r22 × v2| + |r23 × v3|
|v'3|   |r30 × v0|   |r31 × v1| + |r32 × v2| + |r33 × v3|

In each step above, the elements of the rotation matrix can be loaded into an XMM register with the 
MOVAPS instruction, assuming the rotation matrix begins at a 16-byte-aligned memory location. 
Transposition of the rotation matrix eliminates the need to accumulate the floating-point values in an 
XMM register, but it does require the duplication of the elements of the 4 × 1 column vector V in all 
four floating-point values of the XMM register in each step above. The following example shows a 
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SIMD function that performs 4 × 4 matrix multiplication upon a stream of num_vertices_to_rotate 
vertices.

Example

4 X 4 Matrix Multiplication (SIMD)

;include listing.inc

INCLUDELIB LIBCMT
INCLUDELIB OLDNAMES

PUBLIC  _matrix_x_vector_simd
_TEXT   SEGMENT
_matrix_x_vector_simd PROC
;==============================================================================
; Parameters passed into routine:
; rcx = ->trR
; rdx = ->v
; r8 = num_vertices_to_rotate
; r9 = ->rotv
;==============================================================================
;
;==============================================================================
; THE 4 ASM LINES BELOW LOAD THE FUNCTION's ARGUMENTS INTO GENERAL-PURPOSE
; REGISTERS (GPRS)
; rcx = address of Transposed Rotation Matrix
; rdx = address of vertices to rotate
; r8  = # of vertices to rotate
; r9  = address of rotated vertices
;==============================================================================
mov r10, r8                         ; R10 = num_vertices_to_rotate
shl r10, 4                          ; R10 = 16*num_vertices_to_rotate
shl r8, 1                           ; R8  = # quadwords of vertices to rotate
add rdx, r10                        ; RDX = -> end of "v"
add r9, r10                         ; R9  = -> end of "rotv"
neg r8                              ; R8  = -# quadwords of vertices to rotate
;==============================================================================
; THE 4 ASM LINES BELOW LOAD THE TRANSPOSED ROTATION MATRIX "R" INTO XMM0-XMM3
; IN THE FOLLOWING MANNER:
; xmm0 = column 0 of "R" or row 0 of "R" transpose
; xmm1 = column 1 of "R" or row 1 of "R" transpose
; xmm2 = column 2 of "R" or row 2 of "R" transpose
; xmm3 = column 3 of "R" or row 3 of "R" transpose
;==============================================================================
vzeroupper
vmovaps xmm0, [rcx]     ; XMM0 = [R30,R20,R10,R00]
vmovaps xmm1, [rcx+16]  ; XMM1 = [R31,R21,R11,R01]
vmovaps xmm2, [rcx+32]  ; XMM2 = [R32,R22,R12,R02]
vmovaps xmm3, [rcx+48]  ; XMM3 = [R33,R23,R13,R03]
;==============================================================================
; THIS LOOP ROTATES "num_vertices_to_rotate" VERTICES BY THE TRANSPOSED
; ROTATION MATRIX "R" PASSED INTO THE ROUTINE AND STORES THE ROTATED
; VERTICES TO "rotv".



Chapter 10 Optimizing with SIMD Instructions 183

Software Optimization Guide for AMD Family 15h Processors47414 Rev. 3.06 January 2012

;==============================================================================
rotate_vertices_loop:
vxorps       xmm8, xmm8, xmm8
vmovlps      xmm4, xmm8, QWORD PTR [rdx+8*r8]   ; XMM4=[,,v1,v0]
vmovlps      xmm6, xmm8, QWORD PTR [rdx+8*r8+8] ; XMM6=[,,v3,v2]
vunpcklps    xmm4, xmm4, xmm4          ; XMM4=[v1,v1,v0,v0]
vunpcklps    xmm6, xmm6, xmm6          ; XMM6=[v3,v3,v2,v2]
vmovhlps     xmm5, xmm4, xmm4          ; XMM5=[,,v1,v1]
vmovhlps     xmm7, xmm6, xmm6          ; XMM7=[,,v3,v3]
vmovlhps     xmm4, xmm4, xmm4          ; XMM4=[v0,v0,v0,v0]
vmulps       xmm4, xmm4, xmm0          ; XMM4=[R30*v0,R20*v0,R10*v0,R00*v0]
vmovlhps     xmm5, xmm5, xmm5          ; XMM5=[v1,v1,v1,v1]

;==============================================================================
;USE FMA3 INSTRUCTION IF SYMBOL "FMA3" IS DEFINED, OTHERWISE USE FMA4 INSTRUCTION
;==============================================================================
ifdef FMA3
vfmadd231ps  xmm4, xmm5, xmm1          ; XMM4=[R30*v0+R31*v1,R20*v0+R21*v1,
else                                   ;       R10*v0+R11*v1,R00*v0+R01*v1]
vfmaddps     xmm4, xmm5, xmm1, xmm4  
endif

vmovlhps     xmm6, xmm6, xmm6          ; XMM6=[v2,v2,v2,v2]
vmulps       xmm6, xmm6, xmm2          ; XMM6=[R32*v2,R22*v2,R12*v2,R02*v2]
vmovlhps     xmm7, xmm7, xmm7          ; XMM7=[v3,v3,v3,v3]

ifdef FMA3
vfmadd231ps  xmm6, xmm7, xmm3          ; XMM6=[R32*v2+R33*v3,R22*v2+R23*v3,
else                                   ;       R12*v2+R13*v3,R02*v2+R03*v3]
vfmaddps     xmm6, xmm7, xmm3, xmm6  
endif

vaddps       xmm4, xmm4, xmm6          ; XMM4=New rotated vertex
vmovntps     XMMWORD PTR[r9+8*r8],xmm4 ; Store rotated vertex to rotv.
add r8, 2                                 ; Decrement the # of QWORDs to rotate by 2.
jnz rotate_vertices_loop
sfence                                 ; Finish all memory writes.
;==============================================================================
ret    0
_matrix_x_vector_simd ENDP
_TEXT  ENDS
END

To greatly enhance performance, the previous function can perform the matrix multiplication not only 
on one four-column vector, but on many. Creating a separate function to transform a single vertex and 
repeatedly calling the function is prohibitively expensive because of the overhead in pushing and 
popping registers from the stack. This applies to routines that negate a single vector, nullify a single 
vector, and add two vectors.
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10.13 Floating-Point-to-Integer Conversion

Optimization
Floating-point-to-integer conversion in C and C++ requires the use of truncation. Use one of the 
instructions from VCVTTSS2SI, VCVTTSD2SI to convert a floating-point number to integer when 
truncation is required. See the AMD64 Architecture Programmer's, Volume 4: 128-Bit Media 
Instructions, order# 26568, for details.

Application
This optimization applies to:

• 32-bit software

• 64-bit software

Rationale
These instructions provide the fastest means by which to convert floating-point types to integers in 
AMD Family 15h processors.

10.14 Reuse of Dead Registers

Optimization
On AMD Family 15h processors, when it is necessary to save the contents of a register that is a 
single-precision floating-point scalar to another unused (or dead) register, use VMOVAPS dest, src 
instead of VMOVSS dest, src.

When saving a register that is a double-precision floating-point scalar to another register, where the 
contents are unknown, then use VMOVAPD dest, src instead of VMOVSD dest, src.

Application
This optimization applies to:

• 32-bit software

• 64-bit software

Rationale
On the AMD Family 15h processors, the VMOVSS dest, src instruction takes additional time to 
execute if any of the upper three fields of dest is a denormal. Additionally, the VMOVSS dest, src 
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instruction has a dependency on previous instructions that change dest, either partially or in full, and 
the VMOVAPS dest, src instruction breaks such dependency chains by changing dest as a whole. 

The VMOVSD dest, src instruction also takes additional time to execute, if the previous value in 
xmm1 is a denormal. Moreover, the VMOVSD dest, src instruction has a dependency on previous 
instructions that change dest either partially or in full. On the other hand, the VMOVAPD dest, src 
instruction breaks such dependency chains by writing to all of dest.

10.15 Floating-Point Scalar Conversions 

Optimization 
Use the recommended instruction sequences given in Table 5 and Table 6 to convert integer data to 
floating-point data.

Application 
This optimization applies to: 

• 32-bit software 

• 64-bit software 

Rationale 
On AMD Family 15h processors, some SIMD conversion instructions are VectorPath and/or add a 
false dependency on previous instructions that change the same destination register. In the cases for 
which there are alternatives in Tables 5 and 6, these instruction sequences use DirectPath instructions 
and provide better performance. (All recommendations apply to both 32-bit and 64-bit software, 
unless stated otherwise.)

Several instructions may be required to perform some conversions from unsigned integer to floating-
point, due to the lack of a suitable conversion instruction, therefore signed integers should be favored 
when converting to floating-point.

Table 5. Single-Precision Floating-Point Scalar Conversion
Conversion From a Register From Memory
32-Bit Signed Integer to 
Single-Precision 

vmovd xmm, reg32
vcvtdq2ps xmm, xmm

vmovd xmm, mem32
vcvtdq2ps xmm, xmm 

32-Bit Unsigned Integer 
to Single-Precision 

64-bit software:

vxorps xmm, xmm, xmm2

mov mem64, reg64
vcvtsi2ss xmm, xmm, mem64

64-bit software:

vxorps xmm, xmm, xmm2

vcvtsi2ss xmm, xmm, mem64
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In loops which involve the conversion of a scalar operand, it is helpful to clear the targeted 
destination register to zeros prior to the conversion. When performing scalar conversions require 
mergingn the floating point unit first checks whether the upper 64 or 96 bits of the destination register 
are set.  If any of these bits are set to 1, then no merge occurs and merge dependencies are eliminated.

64-Bit Signed Integer to 
Single-Precision 

64-bit software:

vxorps xmm, xmm, xmm2

mov mem64, reg64
vcvtsi2ss xmm, xmm, mem64

64-bit software:

vxorps xmm, xmm, xmm2

vcvtsi2ss xmm, xmm, mem64

Double-Precision to 
Single-Precision 

vunpcklpd xmm2, xmm2, xmm21

vcvtpd2ps xmm1, xmm2 

vmovsd xmm, mem64
vcvtpd2ps xmm, xmm 

Notes:
1. If the contents of [127:64] of xmm2 is known to be a normal number, this instruction can be omitted.
2. This avoids a merge dependency for contents of [127:32] of xmm as a result of a previous long latency 

instruction that has written to contents of [127:0] of xmm.

Table 6. Double-Precision Floating-Point Scalar Conversion
Conversion From a Register From Memory
32-Bit Signed Integer to 
Double-Precision 

vmovd xmm, reg32
vcvtdq2pd xmm, xmm

vmovd xmm, mem32
vcvtdq2pd xmm, xmm 

32-Bit Unsigned Integer 
toDouble-Precision 

64-bit software:

vxorpd xmm, xmm, xmm2

mov mem64, reg64
vcvtsi2sd xmm, xmm, mem64

64-bit software:

vxorpd xmm, xmm, xmm2

vcvtsi2sd xmm, xmm, mem64

64-Bit Signed Integer to 
Double-Precision 

64-bit software:

vxorpd xmm, xmm, xmm2

mov mem64, reg64
vcvtsi2sd xmm, xmm, mem64

64-bit software:

vxorpd xmm, xmm, xmm2

vcvtsi2sd xmm, xmm, mem64

Single-Precision to 
Double-Precision 

unpcklps xmm2, xmm21

cvtps2pd xmm1, xmm2

vmovss xmm, mem32
vcvtps2pd xmm, xmm

Notes:
1. If the contents of [63:32] of xmm2 is known to be a normal number, this instruction can be omitted.
2. This avoids a merge dependency for contents of [127:32] of xmm as a result of a previous long latency 

instruction that has written to contents of [127:0] of xmm.

Table 5. Single-Precision Floating-Point Scalar Conversion
Conversion From a Register From Memory
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10.16 Move/Compute Optimization

Optimization
The latency of certain XMM(SSE/AVX) move instructions that provide an input operand to a 
subsequent compute instruction can be hidden in all cases. This does not apply to 256-bit operations.

Application
This optimization applies to:

• 32-bit software 

• 64-bit software 

Rationale
Move instructions of this type have no latency cost regardless of location, as the hardware now 
provides the alias to each and every instance.

This hardware optimization was initially designed to work with the MOVAPD, MOVAPS, 
MOVDQA, MOVDQU, MOVUPD, and MOVUPS instructions, but works well with their AVX 
variants regardless of 128-bit versions. Other SIMD move instructions cause a two- cycle delay in 
executing the dependent compute instruction. If at all possible, every effort should be made to use 
move instructions that the processor hardware can optimize.

Move-Compute Execution Rules
Move instructions themselves cannot short-circuit the latency of a prior move instruction on which  
they are dependent; this can only be done by compute instructions.

Each move instruction’s output-to-input mapping can be recognized at a time and eliminated for 
dependent compute instructions.

Example 1
In this example, an intervening VSUBPD instruction does not affect the destination register of the 
previous VMOVAPD instruction, which the optimization is able to cut out of the critical path for the 
subsequent VADDPD instruction.

vaddpd xmm2, xmm2, xmm1
vmovapd xmm3, xmm2      ; Hardware recognizes xmm3 = xmm2.
vsubpd xmm4, xmm4, xmm0 ; Optimization is not applicable, since neither
                        ; source operand matches the previous destination
                        ; of the previous vmovapd.
vaddpd xmm4, xmm4, xmm3 ; Executes as xmm4 = xmm4 + xmm2 to cut VMOVAPD
                        ; out of critical path.
vaddpd xmm3, xmm3, xmm2 ; Executes as xmm3 = xmm2 + xmm2, then cancels further
                        ; use of this optimization because xmm3 is overwritten



188 Optimizing with SIMD Instructions Chapter 10

47414 Rev. 3.06 January 2012Software Optimization Guide for AMD Family 15h Processors

Example 2
Multiple mov eliminations in play.
 vmovapd xmm2, xmm1;
 vmovapd xmm3, xmm2;
 vmovapd xmm4, xmm3;
 vaddpd xmm5, xmm4, xmm3 ; both xmm3 and xmm4 are 
                         ; eliminated with the alias to xmm1

10.17 Using SIMD Instructions for Rounding

Optimization
Use AVX instructions (VROUNDSS, VROUNDSD, VROUNDPS, and VROUNDPD)  to round 
floating-point values to integers.

Application
This optimization applies to

• 32 bit software

• 64 bit software

Rationale
The AVX instruction set provides the VROUNDSS and VROUNDSD instructions for rounding scalar 
single- and double-precision floating-point values and the packed variants of these instructions 
(VROUNDPS and ROUNDPD) to round four single-precision or two double-precision values at a 
time. These instructions allow you to perform rounding without setting the Rounding Control field of 
the MXCSR Control and Status Register. 

For details of how these instructions are used, see the AMD64 Architecture Programmer’s Manual 
Volume 4: 128-Bit and 256-Bit Media Instructions, order# 26568.

10.18 Using SIMD Instructions for Floating-Point 
Comparisons

Optimization
Whenever possible, use the three-operand AVX instructions (VCMPSS, VCMPSD, VCMPPS and 
VCMPPD to compare floating point values; as well as VMINSS, VMINSD, VMINPS, VMINPD, 
VMAXSS, VMAXSD, VMAXPS and VMAXPD to convert conditional expressions to vector or 
scalar AVX forms.
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Application
This optimization applies to

• 32 bit software

• 64 bit software

Rationale
The AVX instruction set provides three-operand instructions for comparing single- and double-
precision scalar and vector floating point values. These “non-destructive” instructions write their 
resulting values into a separate destination register, rather than overwriting one of the source 
registers. This improves performance by increasing the work per instruction and reduces the the need 
to save and reload register operands.

Example
The VMINSS/VMINSD and VMAXSS/VMAXSD instructions are especially useful when used to 
compute the minimum, maximum and median elements in an array of floating point numbers.

The following pseudocode shows how to compute the minimum of an array of double precision 
floating-point values, using these instructions.

Original loop:

double min = a[0]

for(int i = 0; i < n; i++)
{
if(a[i] < min)

min = a[i];

}

Assembly code for the loop body using AVX instructions:

        vmovsd xmm1,QWORD PTR [rcx] ;xmm1 = a[0]
loopmin:
        vmovsd xmm2,QWORD PTR [rcx+r11*8] ;xmm2=a[i]
        vminsd xmm1, xmm1, xmm2
        add r11,1
        cmp r11,r8
        jl loopmin
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10.19 Optimizing with F16c instructions

Optimization
Use F16c instructions where applicable on AMD Family 15h (models 10h+) processors to convert 
floating point values between 32-bit single precision and 16-bit half precision formats.

Rationale
The AMD Family 15h (models 10h+) processors support a new 16-bit floating point data type and 
two new instructions (VCVTPH2PS and VCVTPS2PH) to convert single-precision 32-bit floating 
point values to 16-bit half-precision floating point values, and vice versa. Using these instructions is 
preferred over writing bit-manipulation routines to explicitly handle these conversions. These 
instructions save cycles, reduce code size, and can be used to parallelize multiple conversions. For 
more details refer to the "AMD 64 Architecture Programmer's Manual Documentation Updates for 
AMD Family 15h Processors", order No. 45988.

Example
A common operation in image processing applications is the conversion of a 32-bit float into 16-bit 
float. This is a performance-critical operation that requires extensive bit manipulation. We can 
simplify it using F16c instructions.

Below we outline two approaches to converting an array of 32-bit floats to an array of 16-bit floats 
using these new instructions. The first example converts each array element in sequential order and 
the second example converts four elements in parallel at a time.

Example 1: Convert array of 32-bit floats to array of 16-bit floats, one float at a time

short shortoutputs[12];
void float2halfoptimized1() {
  float floatinputs[12] = {1,2,3,4,5,6,7,8,9,10,11,12};
  int i;
  for(i = 0; i < 12; i++) {
    shortoutputs[i] = float2half(floatinputs[i]); 
  }
}

# Convert a single 32-bit float to a 16-bit float, represented as a short
#
#
# Prototype:
#
#
#     short float2half(float input)
#
# parameters are passed in by gcc as:
# xmm0 - float input
# return value stored in eax
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.globl float2half
       .type   float2half,@function
float2half:
        vcvtps2ph $0, %xmm0, %xmm0
        vmovd %xmm0, %eax
        ret
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Example 2: Convert array of 32-bit floats to array of 16-bit floats, four float values at a time 

void float2halfoptimized2( ) {
  float floatinputs[12] = {1,2,3,4,5,6,7,8,9,10,11,12};
  int i;
  for(i = 0; i < 12; i+=4) {
    double result = float2halfmulti(floatinputs[i], floatinputs[i+1], 
floatinputs[i+2], floatinputs[i+3]); 
    //Unpack the four 16-bit floats contained in the result
    shortoutputs[i] = ((short*)(&result)+0);
    shortoutputs[i+1]=((short*)(&result)+1);
    shortoutputs[i+2]=((short*)(&result)+2);
    shortoutputs[i+3]=((short*)(&result)+3);
  }
}

# Convert four 32-bit floats to four 16-bit floats.
#
#
# Prototype:
#
#
#     double float2halfmulti(float input1, float input2, float input3, float 
input4)
#
# parameters are passed in by gcc as:
# xmm0 - float input1
# xmm1 - float input2
# xmm2 - float input3
# xmm3 - float input4
# return value stored in xmm0 contains 4 packed 16-bit floats

.globl float2halfmulti
       .type   float2halfmulti,@function
float2halfmulti:
        vpunpckldq %xmm1, %xmm0, %xmm0  # xmm0[63-32] = xmm1[0-31]
        vpunpckldq %xmm3, %xmm2, %xmm2  # xmm2[63-32] = xmm3[0-31]
#       xmm0[63:0] = xmm2[63:0], xmm0[127:64] = xmm0[63:0]
        vmovlhps %xmm2, %xmm0, %xmm0
#       round to nearest for all 4 packed float values to short values
        vcvtps2ph $0, %xmm0, %xmm0
        ret



Chapter 11 Multiprocessor Considerations 193

Software Optimization Guide for AMD Family 15h Processors47414 Rev. 3.06 January 2012

Chapter 11 Multiprocessor Considerations

This chapter covers the following topics:

11.1 ccNUMA Optimizations
Information and examples provided in this chapter are primarily aimed at multi-socket server 
implementations.

AMD multiprocessor systems use cache coherent non-uniform memory access (ccNUMA). For 
details on optimizing applications for ccNUMA systems, see Performance Guidelines for AMD 
ccNUMA Multiprocessor Systems, order# 40555.

11.1.1  Scheduling Single and Multithreaded Applications on 
Multiprocessor Systems

Optimization
On AMD multi-core multiprocessor systems, schedule threads in such a way as to maintain a 
balanced system load. In most cases, it is advisable to rely on the ccNUMA-aware operating system 
to make the correct scheduling decisions for single and multi-threaded applications.

Be sure the operating system is properly configured to support ccNUMA. Most versions of 
Microsoft® Windows™-based operating systems support ccNUMA. For 64-bit Linux™, there may 
be separate kernels supporting ccNUMA that should be selected. The 2.6.x Linux kernels feature 
NUMA awareness in the scheduler. Most SuSE and Red Hat 64-bit Linux distributions have the 
ccNUMA-aware kernel. All versions of Solaris™ for AMD64 support ccNUMA without change.

Topic Page
ccNUMA Optimizations 193
Writing Instruction Bytes to Memory on Multiprocessor Systems 202
Multithreading 204
Data Organization 205
Data Caching 205
False Data Sharing 206
Data-Parallel Threading 207
Stream Processing 208
Multithreaded Libraries 209
Locked Instructions as Memory Barriers 210
Optimizing Inter-Core Data Transfer 212
Optimizing Inter-Core Data Transfer 212
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Application
This optimization applies to:

• 32-bit software

• 64-bit software

Rationale
Some multiple processor systems available today employ a symmetric multiprocessing (SMP) 
architecture. Processors on an SMP platform generally share a common or centralized memory bus 
having identical memory access latencies regardless of the processor position. Because the processors 
use the same bus and memory, system performance may be negatively affected when bottlenecks 
occur due to increased demands on the single memory bus. Figure 3 shows a simplified diagram of a 
two processor(2P) SMP system.

Figure 7. Simple SMP Block Diagram

AMD multiprocessor systems implement cache coherent non-uniform memory access (ccNUMA) 
architecture to connect two or more processors. In a ccNUMA design, each processor has its own 
memory system. In AMD family 10h and later multiprocessor systems, each processor has its own 
memory controller and its own local memory. When a processor accesses its local memory, the 
latency is relatively low, especially when compared to that of a similar SMP system. If a processor 
accesses remote memory—that is, memory located on a different processor—then the access latency 
is higher. The phrase 'non-uniform memory access' refers to this potential difference in latency. 
Figure 4 on page 197 shows a simplified diagram of a two processor (2P) AMD processor system in a 
ccNUMA configuration.

CPU0 CPU1

Memory
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Figure 8. AMD 2P System

AMD family 15h processors may have multiple compute units that share the on-chip integrated 
memory controller and memory. Figure 8 shows a simplified diagram of a two processor (2P) AMD 
family 15h system in a ccNUMA configuration. (Recall that a “compute unit” consists of one or two 
independent integer units and a floating point unit that all share a level 2 cache, as well as instruction 
fetch, decode, and dispatch units.)

Figure 9. Dual AMD Family 15h Processor Configuration

An operating system running on an AMD family 15h platform transparently coordinates and manages 
the memory configuration. Thus, it is not necessary for applications to be aware of memory 
configuration details. Thanks to the OS, the platform simply appears to have one contiguous block of 
memory, regardless of how many processors are in the platform. The architecture simultaneously 
ensures that the entire shared memory space gives consistent values despite potentially parallel 
accesses from different processors. The phrase “cache coherence” in a ccNUMA system refers to this 
guaranteed memory consistency.
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In an AMD 2P multiprocessor system, each processor is directly connected to the other processor. In 
addition to the 2P configuration, AMD offers 4P and larger configurations. 

Figure 10 shows an example of a four processor AMD family 15h system in a ccNUMA 
configuration. The processors, also called nodes, are numbered Node 0, Node1, Node2 and Node 3 
clockwise from the top left. In this example, each node has four compute units that are labeled CU0, 
CU1, CU2 and CU3, respectively.

Figure 10. Block Diagram of a ccNUMA AMD Family 15h Quad-Core Multiprocessor 
System
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The four processors are connected by coherent HyperTransport™ links. In a typical configuration, 
each processor has one bidirectional non-coherent link that is dedicated to I/O and three bidirectional 
coherent HyperTransport links that each connect to each quad-compute unit processor in the 
configuration. In a 4-way configuration, this assures a direct connection for any given quad-compute 
unit processor to all the other quad-compute unit processors in the system. Each node is connected to 
its own memory.

The term hop is commonly used to describe access distances on NUMA systems. If a thread accesses 
memory on the same node as that on which the thread is running, the memory access is considered a 
zero-hop access or local access. If a thread is running on one node but accessing memory that is 
resident on a different node, the access is considered a remote access. If the node on which the thread 
is running and the node on which the memory is resident are directly connected to each other, it is a 
one-hop access. If they are indirectly connected to each other (no direct coherent HyperTransport 
link), it is considered a multi-hop access.

Family 15 AMD processors provide four Hypertransport links per processor, enabling four processor 
systems to be connected with remote memory that is never more than one hop away from any 
requestor.  This is an improvement upon earlier implementations of AMD64 processors that only 
provided three Hypertransport links, requiring some two-hop remote memory references for four-
processor systems.

Large configurations of more than four processors may contain processors that are not directly 
connected.  However, Hypertransport links may now be divided in half, enabling more direct 
connections between processors but at a reduced bandwidth.  System OEMs may choose to use either 
divided Hypertransport links or configurations with multi-hop remote memory references. Depending 
on the number of processors and configuration, two- and even three-hop memory accesses are 
possible.  For large-scale systems, check with the manufacturer's documentation for specifics on the 
Hypertransport interconnection scheme.

The four compute units on each node of the AMD family 15h processor share the Northbridge, 
memory and HyperTransport technology resources available on that node. Scheduling should be 
carried out in such a way as to avoid overloading the resources on a single node, while leaving the 
resources on the rest of the system unused—in other words, loads should be balanced.

Scheduling multiple threads across nodes and cores of a system is complicated by a number of 
factors:

• Whether multiple threads access independent data.

• Whether multiple threads access shared data.

• Whether the system is idle.

Multiple Threads-Independent Data
When scheduling multiple threads that access independent data on an idle system, it is preferable, 
first, to schedule the threads to an idle core of each node until all nodes are exhausted and, then, to 
schedule the other idle core of each node. In other words, schedule using node major order first, 
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followed by core major order. Since each compute unit has a single L2 cache, this is the preferred 
scheduling approach for independent data for AMD multi processors.

For example, when scheduling threads that access independent data on a four-way quad-core AMD 
family 15h system, scheduling the threads in the following order is recommended (see Figure 10 on 
page 196):

• compute unit 0 on node 0, node 1, node 2 and node 3 in any order

• compute unit 1 on node 0, node 1, node 2 and node 3 in any order

• compute unit 2 on node 0, node 1, node 2 and node 3 in any order

• compute unit 3 on node 0, node 1, node 2 and node 3 in any order

Multiple Threads-Shared Data
When scheduling multiple threads that share data on an idle system, it is preferable to schedule the 
threads on the compute units of an idle node first, then on compute units of the the next idle node, and 
so on. In other words, schedule using core major order first followed by node major order. However, 
for AMD family 15 processors, there are some variations to core major ordering due to the 
configuration of each compute unit.  For applications with a lot of integer processing, scheduling two 
threads per compute unit is beneficial, if each compute unit contains two integer units. This enables 
these two threads to share data via the L2 cache, which enables higher performance than sharing via 
the L3 cache (if present). On the other hand, for floating point intensive applications, it may be more 
desirable to schedule one thread per compute unit to avoid scheduling conflicts in the single floating 
point unit per compute unit.  Because the floating point unit has a high capacity, and since floating 
point programs also contain many integer operations (address arithmetic, for example), we assume in 
general that scheduling a number of threads per compute unit that is equal to the number of integer 
units per compute unit is preferred for data sharing applications.

For example, when scheduling threads that share data on a four-way quad-core AMD family 15h 
system (as shown in Figure 10), AMD recommends using the following order:

• compute unit 0, compute unit 0, compute unit 1, compute unit 1, compute unit 2, compute unit 3, 
compute unit 3 on node 0 in any order

• compute unit 0, 1, 2, or 3 on node 1 (two threads each) in any order

• compute unit 0, 1, 2, or 3 on node 2 (two threads each) in any order

• compute unit 0, 1, 2, or 3 on node 3 (two threads each) in any order

Scheduling on a Non-Idle System
It is a more difficult task to schedule multiple threads optimally for an application on a non-idle 
system. It requires that the application make global holistic decisions about machine resources, 
coordinate itself with other applications already running, and balance decisions between them. In 
such cases, it is best to rely on the OS to do the appropriate load balancing. In general, most 
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developers will achieve good performance by relying on the ccNUMA-aware OS to make the right 
scheduling decisions on idle and non-idle systems.

In addition to the scheduler, several NUMA-aware operating systems provide tools and APIs to allow 
the developer to explicitly bind a thread (set thread affinity) to a certain core or node. Using these 
tools or APIs overrides the scheduler and hands over control for thread placement to the program. For 
additional details on the thread/process affinity tools and APIs supported in various OSs, refer to 
Appendix C, “Tools and APIs for AMD Family 15h ccNUMA Multiprocessor Systems”.

11.1.2  Data Locality Considerations on Multiprocessor Systems

Optimization
Keep data accessed by a thread local to the node on which the thread runs. In a multithreaded 
application in which each thread operates on largely independent data, each thread should allocate 
and initialize the data it accesses and allow the ccNUMA-aware operating system to make the right 
data locality decisions.

In multithreaded applications, performance may benefit from taking advantage of API functions or 
tools for thread and memory placement (thread and memory affinity) offered by the operating system.

Application
This optimization applies to:

• 32-bit software

• 64-bit software

Rationale
It is best to keep data local to the node from which it is being accessed. Accessing data remotely is 
slower than accessing data locally. The further the hop distance to the data, the greater the cost of 
accessing remote memory. For most memory latency-sensitive applications, keeping data local is the 
single most important recommendation to consider. While the ratio of latencies of remote accesses to 
local accesses may be close to 1.5 to 1 for small-scale systems, this ratio can grow to 2 or 3 or more to 
1 for larger-scale topologies.

Almost all ccNUMA-aware operating systems by default rely on the first-touch policy: the physical 
memory for data is only committed on the node on which the thread or process writing to it for the 
first time runs. In general, commitment implies mapping of virtual pages to zeroed out physical 
pages. This is done by the OS when it detects a first-touch and takes a page fault. Thus, data is kept 
local on the node where the thread or process that writes to it for the first time is run.

The OS keeps data local on the node where first-touch occurs as long as there is enough physical 
memory available on that node. If enough physical memory is not available on the node, then 
different OSs use various advanced techniques to determine where to bind the data.
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Memory once bound to a node by the first-touch policy normally resides on that node for its lifetime. 
However, the OS scheduler could migrate the thread or process that first touched the memory from 
one core to another core even on a different node. This can be done by the OS for the purpose of load 
balancing.

This can move the process/thread farther from its allocated memory. Most schedulers will try to bring 
the thread or the process back to the core on which the thread was previously running and on which 
its memory was local, but this is not guaranteed. Furthermore, the thread or process can dynamically 
allocate and first-touch more memory on the node to which it was moved before it is moved back. 
This is a difficult problem for the OS to resolve, since it has no prior information as to how long the 
thread or process is going to run and, hence, whether migrating it back is optimal or not. 

If an application demonstrates that threads are being moved away from their associated memory by 
the scheduler, it is typically useful to explicitly set thread placement. By explicitly pinning a thread to 
a node, the application can tell the OS to keep the thread on that node and, thus, keep data accessed by 
the thread local to it by the virtue of the first-touch policy.

The performance improvement obtained by explicit thread placement may vary depending on 
whether the application is multithreaded, whether it needs more memory than available on a node, 
whether threads are being moved away from their data, etc.

In cases in which threads are scheduled from the outset on a core that is remote from their data, it 
might be useful to explicitly control data placement. This is discussed in detail in the “Scheduling on 
a Non-Idle System” on page 198. Advanced software developers can refer to Appendix C, “Tools and 
APIs for AMD Family 15h ccNUMA Multiprocessor Systems,” on page 317 for additional details on 
support for these tools and APIs in various OSs.

11.1.3  Techniques to Minimize and Alleviate Data Sharing

Optimization
Avoid accessing data in memory that was first touched by a thread running on a different node.

Application
This optimization applies to:

• 32-bit software

• 64-bit software

Rationale
When data is shared between threads running on different nodes, the default policy of local allocation 
by first-touch used by the OS can become non-optimal.

For example, a multithreaded application may have a startup thread that sets up the environment, 
allocates and initializes a data structure and forks off worker threads. As per the default local 
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allocation policy, the data structure is placed in the physical memory of the node where the start up 
thread performed the first-touch. Forked worker threads are then spread around by the scheduler to be 
balanced across all nodes and their cores. A worker thread starts accessing the data structure remotely 
from the memory on the node where the first-touch occurred. This scenario could lead to significant 
memory and HyperTransport traffic in the system, with the node where the data resides becoming a 
potential bottleneck. This situation is especially bad for performance, firstly, if the startup thread only 
performs the initialization and afterwords no longer needs the data structure and, secondly, if only one 
of the worker threads needs the data structure. In other words, the data structure is not truly shared 
between the worker threads.

It is best in this case to use a data initialization scheme that avoids incorrect data placement due to 
first-touch. This is done by allowing each worker thread to first-touch its own data or by explicitly 
pinning the data associated with each worker thread on the node where the worker thread runs.

Certain OSs provide memory placement tools and APIs that also permit data migration. A worker 
thread can use these to migrate the data from the node where the start up thread performed the first-
touch to the node where the worker thread needs it. There is a cost associated with the migration and 
it would be less efficient than using the correct data initialization scheme in the first place.

If it is not possible to modify the application to use a correct data initialization scheme or if data is 
truly being shared by the various worker threads—as in a database application—then a technique 
called node interleaving can be used to improve performance. Node interleaving allows for memory 
to be interleaved across any subset of nodes in the multiprocessor system. When the node interleaving 
policy is used, it overrides the default local allocation policy used by the OS on first-touch. 

Let us assume that the data structure shared between the worker threads in this case is of size 16 KB. 
If the default policy of local allocation is used, then the entire 16 KB data structure resides on the 
node where the startup thread does first-touch. However, using the policy of node interleaving, the 
16-KB data structure can be interleaved on first-touch such that the first 4 KB ends up on node 0, the 
next 4 KB ends up on node 1, and the next 4 KB ends up on node 2 and so on. This assumes that there 
is enough physical memory available on each node. Thus, instead of having all memory resident on a 
single node and making that the bottleneck, memory is now spread out across all nodes.

The tools and APIs that support explicit thread and memory placement mentioned in the previous 
sections can also be used by an application to use the node interleaving policy for its memory. (See 
Appendix C, “Tools and APIs for AMD Family 15h ccNUMA Multiprocessor Systems”.)

By default, the granularity of interleaving offered by the tools/APIs is usually set to the size of the 
virtual page supported by the hardware, which is 4 K (when system is configured for normal pages, 
which is the default) and 2 M (when system is configured for huge pages). Therefore any benefit from 
node interleaving will only be obtained if the data being accessed is significantly larger than a virtual 
page size.

If data is being accessed by multiple nodes, then it is better to interleave data across the nodes that 
access the data than to leave it resident on a single node. We anticipate that using this rule of thumb 
could give a significant performance improvement. However, developers are advised to experiment 
with their applications to measure any performance change.
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11.1.4  Keep Locks Cacheable and Aligned to a Cache Line Boundary

Optimization
In general, it is good practice for user-level and kernel-level code to keep locks aligned to their 
natural boundaries. In some hardware implementations, locks that are not naturally aligned are 
handled with the mechanisms used for legacy memory mapped I/O and should absolutely be avoided 
if possible.

Application
This optimization applies to:

• 32-bit software

• 64-bit software

Rationale
If a lock is aligned properly, it is treated as a faster cache lock. The significantly slower alternative to 
a cache lock is a bus lock, which should be avoided at all costs. Bus locks are very slow and force 
serialization of many operations unrelated to the lock within the processor. Furthermore, bus locks 
prevent the entire HyperTransport fabric from making forward progress until the bus lock completes. 
Cache locks on the other hand are guaranteed atomicity by using the underlying cache coherence of 
the ccNUMA system and are much faster.

11.2 Writing Instruction Bytes to Memory on 
Multiprocessor Systems

A common situation in dynamically optimized applications is that in which a thread on one processor 
in a multiprocessor system (which we will call the writer) is required to replace an original code 
segment with some new code segment, while there are one or more other threads (executors) on other 
processors that could possibly execute the original code. This can occur, for example, when a function 
is recompiled or reoptimized at run time.

For simplicity, this section discusses the case in which the original code consists of a single 
instruction. If the original code consists of multiple instructions, the writer must always ensure in 
some way that an executor is not in the middle of the original code.

Rule 1
If the part of the original code that needs to be patched fits within an aligned 8-byte boundary, then no 
special considerations are necessary. The writer may simply store the new code into memory.
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In the following example, the instruction itself crosses an aligned 8-byte boundary but since the first 
byte is not changing, the part to be changed does not cross an aligned 8-byte boundary and so can be 
changed with a single store.

Original Code xxxxxF: E8 78 56 34 12 Call $+12345678
New Code xxxxxF:      E8 44 33 22 11 Call $+11223344

When a modification does cross an aligned 8-byte boundary, then care must be taken that the executor 
not see an invalid combination of the original code and the new code. There is no architectural store 
instruction, including instructions that use the lock prefix, to ensure that an executor will not see a 
combination of the original code and the new code. Instead, one of the following methods can be 
used:

• Software semaphores can be used between the writer and the executors to prevent executors from 
entering the original code

or

• The original code can be modified in stages by first writing a branch at the beginning of the 
original code to catch an executor and then modifying the remaining code. In this case a system-
dependent delay must be used after writing the branch. This delay is necessary to ensure that any 
executor that had already fetched the first bytes of the original code (before the branch was 
written) has finished fetching the rest of the original code.

To modify in stages, the writer uses the following steps:

1. Modify the beginning of the original code with a branch that will catch any executor that enters 
the original code. The easiest branch to use is the two-byte short JMP to self (bytes EB, FE). This 
requires that the first two bytes of the original code not cross an 8-byte boundary. When the 
original code is generated and the compiler knows that it is a candidate for patching, it is 
recommended that a NOP be inserted. If the first two bytes of the original code do cross an 8-byte 
boundary, a one-byte BPT instruction and a special BPT trap handler that returns to the BPT 
instruction must be used.

2. Wait for a system-dependent delay. This delay ensures that any Executor who had fetched the 
beginning of the Original Code before the branch was written has finished fetching the rest of the 
Original Code.

• The maximum amount of delay can be lessened by avoiding patches across a 4K byte page 
boundary and lessened further by avoiding patches which cross a 64 byte cache-line boundary.

3. Leaving the self-branch in place, modify the rest of the original code with the new code.

4. Replace the self-branch with the corresponding bytes of the new code.
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11.3 Multithreading
The subject of creating multithreaded software is quite broad, and many resources exist that address 
its various aspects. Here we briefly discuss those aspects of multithreading that are most relevant 
from a hardware perspective.

To fully utilize the CPU power of multicore processors, applications must implement scalable 
threading. In other words, the application must be able to partition the work load into a variable 
number of threads, to match the available resources on the particular machine.

Many of these problems can be resolved by the implementation of various programming practices, 
including task decomposition, careful data organization, and data caching and sharing. Two of the 
most important and straightforward ways to implement scalable threading are by means of data-
parallel threading and stream processing. These methods are described in detail in the following 
sections.

11.4 Task Decomposition

Optimization
For each task, use multiple threads in parallel to process equal workloads involving different data 
items.

Application
This optimization applies to:

• 32-bit software

• 64-bit software

Rationale
Historically, multithreading has been used to implement separate functions. For example, one thread 
might perform I/O operations while another thread handles user input. This approach, called 
functional threading or task-parallel threading, can sometimes simplify the structure of a program, 
especially when the program is performing several asynchronous tasks.

However, functional threading has limitations. Only a fixed, limited number of threads are used. Also, 
the workloads in different threads are not balanced. For these reasons, functional threading is not a 
good match for present and future multicore processors. It doesn't scale up to utilize the hardware.

A much better approach is data-parallel threading. In data-parallel threading, each CPU-intensive task 
is handled in sequence. For each task, multiple threads are used in parallel to process equal workloads 
involving different data items. Ideally, the application can use N threads, to match an N-core 
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processor or system. Not every processing task can be implemented using data-parallel threading. For 
example, data decompression and decryption are often inherently sequential tasks. 

11.4.1  Data Organization

Optimization
Divide data cleanly into many largely independent sets.

Application
This optimization applies to:

• 32-bit software

• 64-bit software

Rationale
Clearly, data parallel threading requires a certain class of algorithms. For example, if data is 
organized as a single linked list, the operation of accessing the list is not well suited to multithreading. 
On the other hand, an array of uniformly sized structures can usually be accessed in parallel as N 
chunks.

Double buffering can be used to good effect. Creating one set of data which is 100% "read only" can 
be valuable, even if this involves total replication of data sets in memory. Processing can read one 
copy of the data, while writing to the other copy. This can greatly reduce or eliminate cache thrashing 
and race conditions between threads. Copying all the data might not be a performance win if you are 
just running two threads, but it can pay off as the number of threads grows.

11.4.2  Data Caching

Optimization
Make good use of the data caches.

Application
This optimization applies to:

• 32-bit software

• 64-bit software
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Rationale
Single-threaded applications are influenced by cache effects. The processor stores recently used data 
in a local cache memory, making subsequent operations on that data run faster. All of the traditional 
cache factors apply to multithreaded code: limited cache size, data replacement policy, set 
associativity of the cache, L1 vs. L2 cache, and related criteria. (For additional information on cache 
architecture and optmizations, see section 7.5, “Memory Caches” in the AMD64 Architecture 
Programmer’s Manual: Volume 2 System Instructions (order#  24593), and Chapter 6 “Cache and 
Memory Optimizations” on page 95. Two additional factors enter the picture when multiple threads 
are running on multiple cores: data sharing between caches, and false sharing between caches.

11.4.3  Data Sharing between Caches

Optimization

Design threads so that each thread operates on separate data.

Application
This optimization applies to:

• 32-bit software

• 64-bit software

Rationale
All threads in a process have a coherent view of memory. If certain data is used by multiple threads, 
then every time that data is modified, it must be copied into more than one cache. This data copying is 
avoided if threads are designed so that each thread operates on separate data. Of course, if threads are 
only reading the data and not modifying it, they can all share the same data, without the additional 
communication of updated values.

11.4.4  False Data Sharing

Optimization
To avoid false data sharing, keep each thread's data carefully separate by enforcing, for example, 64-
byte alignment during allocation.

Application
This optimization applies to:

• 32-bit software

• 64-bit software
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Rationale
False sharing is a subtle variation on data sharing. The data cache is managed on a cache-line basis, 
where each naturally aligned 64-byte cache line is treated as a unit. If any byte is modified, the entire 
cache line is tagged as modified. So if multiple threads access different parts of the same cache line, 
and at least one thread is modifying the data, that cache line must be copied into the other caches to 
maintain coherence. The threads are functionally independent, but they incur a performance penalty 
as if they were actually sharing data. False sharing can be avoided by keeping each thread's data 
carefully separate, for example by enforcing 64-byte alignment during allocation. 

Clean data separation at the algorithm level will minimize the occurrence of real or false data sharing.

11.4.5  Data-Parallel Threading

Optimization
Break up a workload into multiple data sets and use threads to perform the same operations on 
different data in parallel.

Application
This optimization applies to:

• 32-bit software

• 64-bit software

Rationale
Data-parallel threading involves breaking up a workload into multiple data sets and using threads to 
perform the same operations on different data in parallel. The data organization and algorithms used 
by the application must be carefully designed to efficiently support this form of parallelism to avoid 
race conditions or expensive synchronization mechanisms.

Data-parallel threading can usually be made to achieve very good load balancing between threads, 
efficiently utilizing all available CPU resources. Furthermore, if an application is designed for data-
parallel threading, the threads do not alter the overall logical order of operations in the application, so 
they do not introduce as many potential deadlocks or race conditions that can complicate other 
threading strategies.

A trivial example of data-parallel threading involves the addition of two arrays of numbers. The basic 
operation might be expressed in C++ as:

    for (int i=0; i < 10000; i++) {
      c[i] = a[i] + b[i];
    }
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A data-parallel multithreaded implementation would process the arrays in chunks, for example if four 
threads are used, the values of array index i would be assigned to each of the four threads as follows:

Threading can be implemented explicitly, for example, using Win32 thread APIs on Windows® or 
Pthreads on Linux®. The application must choose how many threads to run, create and/or start the 
threads, and detect their completion. The application is also typically responsible for detecting the 
number of processors available at run time.

Most modern compilers also support OpenMP, which greatly simplifies the syntax for data-parallel 
threading in loops. For the following loop, using OpenMP requires just one extra line of code (a 
pragma), which partitions the workload across an appropriate number of threads:

    #pragma omp parallel for
    for (int i=0; i < 10000; i++) {
      c[i] = a[i] + b[i];
    }

OpenMP has a simple API, and it supports many options for controlling how the data-parallel 
threading is executed. For details see  http://www.openmp.org.

On platforms that support multiple processor nodes (as opposed to simply supporting one multicore 
processor), additional performance gains can be achieved because of greater system memory 
bandwidth available. Memory buffers for storing thread-specific data should be allocated locally to 
the NUMA node, by calling the allocation function from within the thread. In some heavily threaded 
applications, it also makes sense to set thread affinity at the time of thread creation to distribute them 
across multiple NUMA nodes. Care must be taken when manually setting affinity.

11.4.6  Stream Processing
Use stream processing to operate on large arrays of related data.

Application
This optimization applies to:

• 32-bit software

• 64-bit software

Rationale
With the advent of truly programmable graphics processing units (GPUs), the programming paradigm 
of stream processing has become much more relevant. Strictly speaking, stream processing is not a 

thread #0 i = 0 through 2499
thread #1 i = 2500 through 4999
thread #2 i = 5000 through 7499
thread #3 i = 7500 through 9999

http://www.openmp.org
http://www.openmp.org
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form of multithreading, but it shares many of the same constraints on data organization and algorithm 
choice as data-parallel threading does.

In stream processing, a set of kernels (i.e., functions) operate on streams—large arrays of related data. 
Typically, kernels implement math operations that can be vectorized, for instance, by using vector 
SIMD instructions for best performance. For maximum efficiency, kernels consume streams that are 
generated as output by other kernels; these streams persist locally in the low-latency processor data 
cache, instead of making a trip through system memory.

At the appropriate time, streams are explicitly moved between processor cache and system memory, 
as a logically separate process from the kernel operations, so data movement is only loosely coupled 
to processing. In principle, this decoupling can enable more efficient gather/scatter operations on 
blocks of data that comprise the streams. For maximum efficiency, stream data should be organized 
contiguously in memory. In many cases, for best performance the stream data can be read from 
memory using software prefetch instructions and, finally, written back to memory using the streaming 
store instructions, which avoid disturbing the L2 cache.

If the application's algorithms and data structures are mappable onto the stream/kernel model, then a 
stream processing approach can be profitably implemented. This can result in increased processor 
performance because data cache locality and memory bandwidth are well utilized and also because 
data-parallel threading can usually be employed in conjunction with the stream processing. Perhaps 
even more importantly, organizing an application to fit the stream processing model can pave the way 
for off-loading the heavy computational workloads to a highly parallel GPU or other specialized 
processor. 

11.4.7  Multithreaded Libraries
Programmers can use multithreaded code libraries, such as the Framewave and AMD Core Math 
Library (ACML), to great advantage in writing applications that incorporate the multithreading 
paradigm.

11.5 Memory Barrier Operations
Memory barriers of type A/B, where A and B represent either a load or store memory operation and A 
is ordered prior to B in program order, allow the programmer to specify that older memory operations 
of type A (load or store) cannot appear to be passed by any younger memory operations of type B 
(load or store). Here, B passing A means that although A precedes B in program order, the results of 
instructions A and B may be returned in any order.

There are four types of memory barriers:

• Load/Load—older loads are not passed by younger loads.

• Store/Store—older stores are not passed by younger stores.

• Load/Store—older loads are not passed by younger stores.
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• Store/Load—older stores are not passed by younger loads.

Memory Barriers in WB Memory
In AMD64 architecture, when using writeback (WB) type memory without streaming stores, the only 
barriers that require an explicit barrier instruction are of the types Store/Load and Store/Store. In WB 
memory, all other barriers are implicit. For additional information on memory and memory barrier 
instructions, see “Forcing Memory Order” in the AMD64 Architecture Programmer’s Manual 
Volume 1: Application Programming and Chapter 7, “Memory System” in the AMD64 Architecture 
Programmer’s Manual Volume 2: System Programming.

Memory barriers in WB memory are unnecessary in systems consisting of a single processor core.

Store/Load and Store/Store Barriers in WB Memory
On the AMD64 architecture there are three ways to achieve memory barriers in WB memory (see 
section 3.9 in APM volume 1):

• SFENCE or MFENCE instruction

• A locked instruction that reads and writes memory—any instruction of the form LOCK op mem, 
reg or LOCK op mem,imm. (The specific instruction XCHG mem, reg is treated as locked whether 
or not a LOCK prefix is used.)

• Architecturally serializing instructions such as CPUID.

11.5.1  Locked Instructions as Memory Barriers

Optimization
Use locked instructions to implement Store/Store and Store/Load barriers.

Application
Applies to programs running on multicore processors or on multiple single core processors.

Rationale
On AMD family 15h processors, the SFENCE and MFENCE instructions are serializing. This stalls 
the pipeline and the processor core cannot begin processing any further instructions until all previous 
instructions are completed and any outstanding memory operations (such as prefetches and stores) 
have completed. (This stall applies only to the individual integer unit of the compute unit where the 
MFENCE or SFENCE instruction is executed.) Architecturally serializing instructions such as 
CPUID have the same pipeline stall behavior as the MFENCE and SFENCE instructions. The 
LOCKed instructions do not stall the pipeline and, thus, allow more instruction-level parallelism.
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LOCKed instructions that access shared memory (memory shared between processor cores) incur a 
delay while the cache line is changed to modified state and data is (potentially) transfered between 
caches in the system. LOCKed instructions that are not naturally aligned incur the very high overhead 
of a bus lock.

When possible, make the LOCKed instruction perform a useful store (an XCHG mem,reg instruction 
can be used for this purpose, assuming the reg can be overwritten). The memory location that is the 
target of the store (e.g., XCHG) instruction should be in the exclusive state in the processor core's 
local L1 cache. Avoid using a memory location that is shared with other processor cores (even if it is 
only written by the local processor core). It is also very important to avoid using a memory location 
that is not naturally aligned.

Thus, for a pattern such as:

     mov   localmem2, rax          ;; store to local memory
     mov   sharedmem1, rbx         ;; store to shared memory
     StoreLoad_Barrier
     mov   rcx, sharedmem3         ;; load from shared memory

Preferred:

     mov   sharedmem1, rbx
     xchg  localmem2, rax   ;; performs local store and StoreLoad barrier
                            ;; in one instruction (note: modifies rax)
     mov   rcx, sharedmem3

Avoid:

     mov   localmem2, rax
     xchg   sharedmem1, rbx   ;; avoid using shared mem for locked operation
     mov   rcx, sharedmem3

Avoid:

     mov   sharedmem1, rbx
     mov   localmem2, rax
     mfence                  ;; avoid MFENCE which is serializing
     mov   rcx, sharedmem3

When the locked instruction cannot be made to do a useful store, there are several variations of 
LOCK op mem, imm that do not modify the memory contents or any registers other than the FLAGS 
register, for example:

LOCK OR DWORD PTR localmem, 0

To repeat, the memory location that is the target of the locked instruction should be in the exclusive 
state in the processor's local L1 cache. A location on the stack such as [RSP] in 64-bit mode or [ESP] 
in 32-bit mode generally meets this criteria. To avoid Store-To-Load forwarding issues, the location 
should be addressed using the same data width with which it is otherwise accessed. 



212 Multiprocessor Considerations Chapter 11

47414 Rev. 3.06 January 2012Software Optimization Guide for AMD Family 15h Processors

Recommended store/store barrier code is similar to the store/load barrier code illustrated above and is 
not repeated here.

11.6 Optimizing Inter-Core Data Transfer
AMD family 15h processors incorporate multiple distinct cores on a single die and have caches that 
are shared by some number of cores. Shared caches provide an efficient way to handle a group of 
computional problems belonging to a producer/consumer model: a program thread running on one 
core produces data that is intended for consumption by a thread that is running on another core. In 
such cases, round trips to and from main memory can be avoided by arranging for pairs of cores to 
communicate through the shared cache.

A naïve implementation of a producer/consumer program will produce bandwidth results that appear 
to be throttled by main memory speeds. Yet, with some knowledge of the cache architecture, it is 
possible to boost throughput significantly.

The producer/consumer program is handled by setting up a system in which the producer and 
consumer threads chase each other around a ring buffer through which they communicate and share 
data. When a thread reaches the end of the buffer, it wraps back around to the beginning and keeps 
reading or writing. There are three scenarios that affect the achievable bandwidth of communication 
between a producer and a consumer thread based on the amount of modified data and how it relates to 
cache sizes.

• If the producer and consumer are executing together on a single compute unit, there is no 
minimum time lag required between writes and reads of the ring buffer.  This is true because the 
L1 cache for each execution unit in the compute unit is write-through.  Thus data produced on one 
execution unit is available for consumption in the shared L2 cache.

• If the producer and consumer threads are executing on separate compute units, then ideally 
communication is through the shared L3 cache, if present. In this case, the consumer thread must 
lag the producer thread by an amount determined by the size of the L2 cache.  The ring buffer 
cannot be smaller than this minimum distance or the producer thread will not be able to spill its 
data into the L3 cache when the consumer wants to read it, causing a longer latency read that 
misses the L3 cache and snoops the producer thread's L2 cache. 

• If the ring buffer is of significant size, as explained below, the producer thread must not lead the 
consumer thread by too much or the data it places in the L3 cache will more than likely be evicted 
to main memory before the producer thread wraps back around again.

These caveats are discussed in the following sections.

Cache sizes and thread distances
For data, the AMD Family 15h processor has three levels of cache, a16-Kbyte L1 data cache, a 1–
2MB unified L2, and a 16MB or greater L3. There are two L1 data caches, one private to each integer 
execution unit; the L2 cache is shared between the execution units for each compute unit. The highest 
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level L3 cache is shared by all four compute units. AMD family 15h cache design is a combination of 
write through and “mostly exclusive” “victim” cache.

“Mostly” exclusive cache hierarchies. In an exclusive cache hierarchy, only one copy of the data 
exists anywhere in the entire cache hierarchy. In such a system, when a thread hits in the L3 cache, it 
moves the cache line to a lower level of cache (which is private to the particular compute unit running 
the thread) without leaving a copy in the L3 cache. However, in AMD Family 15h processors, for 
purposes of optimizing for multiple readers, multiple cores may generate local copies when they 
access the shared L3 cache line. For this reason, the cache is termed “mostly” exclusive.

Victims. Bringing a chunk of new data into a cache requires allocation of cache space by displacing 
an older chunk, the so-called "victim," from that cache. This victim cache line is then pushed into the 
next higher level cache in the hierarchy; of course this, in turn, triggers the displacement of a victim 
from the higher level cache. For this reason, the L3 cache is only filled with victims from the L2 
cache. For AMD family 15 processors, victims from the L1 cache are not pushed to the L2 cache.  
This is due to the write-through nature of the L1 cache as described above. There is no need to push a 
victim from the L1 cache to the L2 cache, as the line is already present in the L2 cache. 

Thread sizes and distances. Because the L1 cache is write-through, when the producer thread 
produces a cache-line of data, it exists both in the L1 cache and the L2 of the producer core; it does 
not get written-through to the L3 caches. When the L2 cache is full, data is evicted to the L3 cache. 
For a program to maximize the bandwidth between two cores through the processor L3 cache, the lag 
distance between the consumer threads and the producer threads must be greater than the size of the 
L2 cache (1MB or 2MB), so that the consumer compute unit can read victim blocks from the 
producer compute unit. 

If the producer and consumer are both executing on the same compute unit, the communication takes 
place through the L2 cache, which is updated immediately with every write.  In this case, no lag 
distance is required.

When communicating through the L3 cache, the producer thread must not get too far ahead of the 
consumer thread, or it will flood the L3 cache with victims and start spilling unread cache-lines to 
memory. On a four compute-unit processor, four producer/consumer pairs can run simultaneously, so 
the most optimal allocation would be to divide the L3 cache evenly between pairs; for example, on a 
microprocessor with a 16MB L3 cache and a 2MB L2 cache, each pair should be allocated 16MB/4 of 
L3 cache. Therefore, the producer thread should be at least 2MB ahead of the consumer, but no more 
than 4MB + 2MB = 6MB or it will evict its own data from the L3 cache. If only one 
producer/consumer pair is running on the processor, the entire L3 cache can be dedicated to the pair.  
On the other hand, if the distance between the producer and consumer can be kept less than the size of 
the L2 cache (2MB in our example), then the producer and consumer threads should be scheduled to 
the same compute unit.

MOESI protocol issues
In the case of communication via the L3 cache, even if the above mentioned distance constraints are 
followed, the measured bandwidth will still be limited by the performance of the DRAM controller. 
This results from the subtle interaction of the cache lines as they are touched by the producer and 
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consumer threads and the MOESI protocol that AMD processors implement to maintain cache 
coherency. (For a complete description of the MOESI protocol, see the (AMD64 Architecture 
Programmer’s Manual Vol 2: System Programming, order# 24593.)

The MOESI cache coherency protocol is defined by the state of data in a cache line in relation to 
other copies of the data (in memory, another processor cache, etc.). These states are summarized as 
follows:

• Modified(M)—The cache line holds the most recent correct copy of the data and the copy in 
memory is stale. (No other copies exist.)

• Owned (O)—A cache line in the owned state holds the most recent, correct copy of the data, 
which may be shared by other processors. This copy is responsible for updating main memory, 
when evicted. (The copy in memory may be stale and other processors may hold a copy in the S 
state.)

• Exclusive (E)—A cache line holds the most recent, correct copy of the data, which is identical to 
the copy in memory. (No other processor holds a copy of the data.)

• Shared (S)—A cache line in the shared state holds the most recent, correct copy of the data, which 
may be shared by other processors. (The copy in memory may be stale.)

• Invalid (I)—A cache line does not hold a valid copy of the data. (valid copies are in main memory 
or another processor cache.)

The producer thread allocates cache-lines in the modified (M) state, as an automatic consequence of 
writing a new entry. Eventually, these M-marked cache lines will start to fill the L3 cache, thanks to 
the adherence to the abovementioned rules defining the allowable distance between threads. When 
the the consumer reads the cache line, the MOESI protocol changes the state of the cache line to 
owned (O) in the L3 cache and pulls down a shared (S) copy for its own use. Now, the producer 
thread circles the ring buffer to arrive back to the same cache line it had previously written. However, 
when the producer attempts to write new data to the owned (marked ‘O’) cache line, it finds that it 
cannot, since a cache line marked ‘O’ by the previous consumer read does not have sufficient 
permission for a write request (in the MOESI parlance). To maintain coherence, the memory 
controller must initiate probes in the other caches (to handle any other S copies that may exist)—and 
this is slow. 

Thus, it is preferable to keep the cache line in the ‘M’ state in the L3 cache. Then, when the producer 
comes back around the ring buffer, it finds the previously written cache line still marked ‘M’, to 
which it is safe to write without coherency concerns. This is exactly what happens when the producer 
and consumer are communicating through a shared L2 cache within the same compute unit.

The PREFETCHW instruction provides the means to control this cache allocation restriction. The 
PREFETCHW instruction provides a hint to the processor that the program intends to modify the 
cache line, so the processor keeps the cache line in the ‘M’ state. To clarify how this works, we will 
step through a scenario in which the consumer thread uses PREFETCHW to proactively fetch cache 
lines.
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As previously mentioned, the producer thread first spills a cache line marked ‘M’ into the L3 cache. 
At some later time, the consumer thread executes the PREFETCHW instruction to load the cache line 
into the L1 and L2 data caches; this time, the processor keeps the cache line marked ‘M’, removes the 
cache line from L3 and pulls the line down the cache hierarchy, into the consuming core’s L1 and L2 
caches. No ‘S’ copy is handed to the consumer core, and no ‘O’ copy remains in the L3 cache. As far 
as the producer compute unit and its associated L2 cache are concerned, the cache line is gone. 

If the producing thread were to wrap around the buffer and attempt to write to the cache line, it would 
register as a cache miss and a request would be sent to the memory controller. To avoid this, the 
consumer needs to evict the cache line back out to the processor shared L3. As discussed previously, 
the only way to acheive this is to have the cache line trickle back up the cache hierarchy, until it 
eventually becomes a victim block into the L3 cache again; in other words, the consumer reads 
enough memory to equal its L2 cache size (1MB or 2MB), forcing the cache line to evict before the 
producer thread needs to write to that memory. When that happens, it’s as if the producer never knew 
that the cache line was gone. When it writes new data to the cache line and it finds it in the L3 cache; 
the producer and consumer are communicating through the L3 cache, fully utilizing the inherent 
speed and bandwidth.

To assure that the consumer has enough time to spill its contents into the L3 cache, the producer 
thread must lag the consumer thread by a distance that is at least equal to the size of the L2 cache. 
This has further implications for the size of the ring buffer. If the consumer must lag the producer by 
X bytes, and the producer must lag the consumer by X bytes, then the buffer must be at least 2 × X in 
size to achieve maximum performance. In practice, it is not a bad idea to pad the numbers by at least 
two units of granularity to allow for some extra space, since cache eviction is not controllable or 
precise. For instance, assuming that the producer and consumer threads write data in 16K chunks 
before checking their positions relative to each other, it would be safe to have the producer and 
consumer enforce a distance of ((L2) + 2 × granularity) or (1MB) + 2 × 16K = 1056K apart (assuming 
a 1MB L2 cache size). This in turn implies that the ring buffer size should be at least 2112K.

Alternatively, a producer and consumer executing within the same compute unit can communicate 
directly through the L2 cache. In this case, the data written in the L1 (and thus the L2) is in the 
modified state, and remains so, as long as no other processors access the data and the L2 is not forced 
to purge the data to the L3. In this scenario, higher communication bandwidth can be achieved 
between the two threads, but the ring buffer must fit in the L2 cache and remain resident there. In this 
scenario, a size between one-half and three-quarters the size of the L2 cache is recommended.

Summary
A producer/consumer program can achieve harmony by successfully bouncing an ‘M’ marked cache 
line back and forth between the consuming and producing threads either through the fast L3 cache or 
through the even faster L2 cache.  For a producer and consumer executing on the same compute unit, 
the ring buffer should be sized at roughly one-half the size of the L2 cache.  The consumer need not 
lag the producer by more than a single cache line.

If the producer and consumer are executing on different compute units that share an L3 cache, keep in 
mind the following constraints:
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• The consumer thread needs to ‘lag’ the producer thread by at least the L2 cache size.

• The producer thread needs to lag the consumer thread by at least the L2 cache size.

• The ring buffer should be at least 2 × (L2).

• The producer thread should not get so far ahead of the consumer to flood the L3, if larger ring 
buffers are used.

• Use PREFETCHW on the consumer side, even if the consumer will not modify the data. 

• Add a small extra factor to the calculated sizes to give the threads additional space when 
communicating through the caches.

In general, the AMD cache is optimized for widely shared data, i.e. one core produces data that may 
be of interest to several other compute units. The ‘S’ and ‘O’ states provide coherence for multiple 
readers of the same data. One compute unit is responsible for the data in the ‘O’ state, but that data 
can be safely shared with many other compute units through the ‘S’ state. In the producer/consumer 
program however, it is known ahead of time that the data the producer creates is only interesting to 
the matching consumer thread, and not to any other thread. Following the constraints listed above, it 
is possible to achieve a large increase in throughput for two producer/consumer pairs on AMD 
processors.
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Chapter 12 Optimizing Secure Virtual 
Machines

The goal of this chapter is to enable virtual machine monitor (VMM) software engineers to minimize 
the performance overhead imposed by the virtualization of a guest. A significant consumer of 
processor cycles on microprocessors enabled for AMD Virtualization™ (AMD-V™) is the world 
switch, which refers to the process of running either a VMRUN instruction to enter a guest context or 
running the #VMEXIT mechanism to leave a guest context. World switch can also broadly apply to 
the requisite software effort surrounding VMRUN and #VMEXIT; software effort for some intercepts 
may be significantly longer than the VMRUN/#VMEXIT portion of the world switch. Several of the 
optimizations proposed in this chapter attempt to reduce the frequency of world switches. Other 
optimizations provide techniques to reduce software or processor effort required for performing other 
virtualization tasks.

For additional information on virtualization and related topics, see Chapter 15, “Secure Virtual 
Machine,” in the AMD64 Architecture Programmer’s Manual Volume 2: System Programming 
(order# 24593).

This chapter covers the following topics:

Topic Page
Use Nested Paging 218
VMCB.G_PAT Configuration 219
State Swapping 219
Economizing Interceptions 220
Nested Page Size 221
Shadow Page Size 222
Setting VMCB.TLB_Control 222
TLB Flushes in Shadow Paging 223
Use of Virtual Interrupt VMCB Field 224
Avoid Instruction Fetch for Intercepted Instructions 225
Share IOIO and MSR Protection Maps 226
Obey CPUID Results 226
Using Time Sources 227
Paravirtualized Resources 228
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12.1 Use Nested Paging

Optimization
Use nested paging instead of shadow paging.

Application
This optimization applies to:

• VMMs

Rationale
To virtualize guests fully, virtual machine monitor (VMM or hypervisor) software must virtualize 
guests' physical memory mappings without the guests' knowledge. On processors that do not 
implement nested paging, a method called shadow paging is commonly used for this purpose. But 
that method is complex to implement efficiently, it is significantly slower than native virtual-to-
physical address translation, and performance tuning often requires significant memory to store 
cached shadow page tables for each guest page table. (There is typically one page table per guest user 
process.) Shadow paging requires both significant time for the VMM to manage shadow page tables 
and frequent VMM intervention during guest page faults, guest CR0, CR3, and CR4 accesses, guest 
INVLPG execution, and guest modifications to page table contents.

In contrast to shadow paging, nested paging requires minimal VMM attention. The CRx, INVLPG, 
and page fault intercepts are unnecessary, and the VMMs need only set up an initial nested page table 
that maps guest physical addresses to system physical addresses. Each guest requires its own nested 
page table. A VMM that uses nested paging is significantly less complex and, thus, is easier to 
validate and verify than a VMM using shadow paging.

A TLB miss under nested paging incurs potentially more memory accesses than a TLB miss under 
shadow paging, but AMD-V microprocessors that support nested paging employ intelligent caching 
to minimize the latency of a nested paging TLB miss.

TLB Miss Latency under Nested Paging
TLB entries cache translations from the virtual address to the system physical address for non-
virtualized programs and from the guest virtual address to the system physical address for shadow 
and nested paging. A TLB hit under nested paging performs the same as a TLB hit under shadow 
paging or in a non-virtualized environment. A TLB miss under nested paging is potentially more 
expensive than a non-nested TLB miss; nested paging page table walks are accelerated by the CPU's 
caching of page table information.
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12.2 VMCB.G_PAT Configuration

Optimization
Properly configure the guest page attribute table (G_PAT) in the virtual machine control block 

(VMCB).G_PAT field.

Application
This optimization applies to:

• VMMs using nested paging

Rationale
When nested paging is enabled, the VMCB.G_PAT field is used to virtualize the guest's PAT register. 
For a description of how the final memory type of a guest page is determined, see section 15.24.8 
“Combining Memory Types, MTRRs” in the AMD64 Architecture Programmer’s Manual Volume 2: 
System Programming (order# 24593). For details on the organization and layout of the VMCB, see 
Appendix B “Layout of VMCB” in the same volume.

Operating systems typically leave the PAT at its default reset value of 0x00070406_00070406, 
although they are free to change the PAT register's contents. The VMM software should start up guest 
virtual machines with the same default value. A VMM that leaves the G_PAT value equal to 0x0 will 
experience significant performance degradation in the guest because all guest memory accesses will 
be forced to the effective PAT type of uncacheable (UC).

12.3 State Swapping

Optimization
Avoid unnecessary VMSAVE, VMLOAD, STGI, CLGI, and guest GPR and FPR state swapping.

Application
This optimization applies to:

• VMMs for guests in all modes

Rationale
Avoiding unnecessary instructions that would occur on every world switch can reduce the cost of a 
world switch.

For example, a VMM may need only a small subset of the state swapped by VMSAVE and 
VMLOAD, so the VMM that expects to return to the same guest can skip VMSAVEing the guest's 
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state and, instead, leave that guest state active in the CPU. If the VMM needs to use any of the 
VMSAVE values, such as the task register (TR), the VMM can use the LTR instruction to install the 
VMM's TR value, while leaving the other guest values intact. Upon returning to the guest, the VMM 
can VMLOAD the guest or execute the LTR instruction to restore guest state from an artificial TR 
entry in VMM context. To ensure that the guest VMCB contains the correct TR values, the VMM 
must intercept the LTR instruction in the guest. 

Similar work can be done on other pieces of state represented in VMLOAD and VMSAVE.

VMRUN sets the global interrupt flag (GIF) to 1—equivalent to executing an implicit STGI 
instruction. Similarly, #VMEXIT clears GIF with an implicit CLGI instruction. A VMM that 
performs only a minimal amount of work between a #VMEXIT and the next VMRUN may wish to 
skip executing explicit STGI and CLGI instructions.

VMMs can use methods similar to callee-save to avoid saving and restoring all guest general-purpose 
registers and floating-point registers if the VMM intends to return to the same guest. This approach is 
probably most useful for performing lazy floating-point state saves and saving debug registers DR0-
DR3.

12.4 Economizing Interceptions

Optimization
Intercept as few MSRs, events, and instructions as possible.

Application
This optimization applies to:

• VMMs

Rationale
To minimize virtualization overhead, VMMs should try to minimize the number of #VMEXITs due 
to MSR and instruction intercepts. 

The VMM should intercept only those MSRs that are critical for system function or security, and 
which, therefore, must be protected from guest access. The VMM can avoid intercepting MSRs that 
are frequently used and changed by operating systems, such as GSBASE and KernelGSBase, and all 
other MSRs that are loaded by VMLOAD, since these MSRs have no system-level side-effects and 
can be efficiently context switched. VMM writers may evaluate the frequency of reads to specific 
MSRs that must be intercepted to determine if the following optimization is worthwhile: if the read 
value is equal to the value the guest expects, then the MSR write may be intercepted while leaving the 
MSR read unintercepted.
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The state that is context switched by AMD-V instructions often does not require intercepts. For 
example, the IDTR, GDTR, LDTR, and TR read and write intercepts, and PUSHF and POPF 
intercepts often do not need to be set because VMRUN/#VMEXIT and VMLOAD/VMSAVE 
appropriately virtualize the related state.

Under nested paging, the paging-related control registers (CR0, CR2, CR3, CR4) and PAT MSR are 
context switched by VMRUN and #VMEXIT and, thus, often do not need to be intercepted. 
Similarly, the INVLPG intercept is not necessary under nested paging. In comparison, most shadow 
paging implementations need to intercept CR0, CR3, and CR4 read and write accesses and the 
INVLPG instruction, although they can avoid intercepting CR2 accesses.

To avoid the overhead of context switching floating-point state, VMMs can use lazy floating point 
context switching methods by controlling guest CR0.TS. When the VMM forces CR0.TS to a value 
other than the value the guest had written, the VMM should intercept CR0 reads and writes in order to 
properly virtualize CR0.TS.

12.5 Nested Page Size

Optimization
Where possible, use large pages in nested page tables.

Application
This optimization applies to:

• VMMs using nested paging

Rationale
VMMs can realize several performance advantages by using large (2 MB or 1 GB) pages in nested 
page tables, when it is possible for the VMM to allocate naturally-aligned large pages for portions of 
guest physical memory images.

The first performance increase comes from reducing multiplicative factors in the cost of TLB misses 
under nested paging. 

Secondly, a common use of large pages is to reduce TLB pressure. For best performance, nested page 
table entries should be larger than or equal to the size of the corresponding guest page size. 

Large pages allow the reduction of the memory footprint used by nested page tables. For each 2-MB 
large page in a nested page table, an entire 4-KB bottom-level page table becomes unnecessary. For 
each 1-GB large page, a 4-KB page-directory table becomes unnecessary, as do up to 512 bottom 
level page tables (each of which occupy 4 KB). 
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12.6 Shadow Page Size

Optimization
Use large pages where possible in shadow paging.

Application
This optimization applies to:

• VMMs using shadow paging

Rationale
For reasons similar to those enumerated in section 12.5, “Nested Page Size” above, VMMs should 
attempt to use large pages in shadow page tables for address ranges that the guest maps using large 
pages. This avoids increasing TLB pressure by the fracturing of large pages into smaller TLB entries 
and reduces software complexity and memory usage.

When a VMM encounters a 2-MB (or 4-MB or 1-GB) guest page and decides to map it using 4-KB 
shadow page table entries, the VMM must use memory to store an additional 512 derived entries, or 4 
KB, for a shadow page table that does not correspond to any page table in the guest. Additionally, if 
the guest performs an INVLPG instruction to the guest's 2-MB page, the VMM must clear all 512 of 
the derived 4-KB entries and must invalidate each 4 KB derived page (in which case it is likely to be 
more efficient to flush the entire TLB, than to execute 512 INVLPG instructions).

12.7 Setting VMCB.TLB_Control

Optimization
When possible, avoid setting VMCB.TLB_Control to 1.

Application
This optimization applies to:

• VMMs
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Rationale
Setting VMCB.TLB_Control to 1 and then VMRUNning that VMCB flushes the entire TLB of all 
entries, local and global, for all ASID values. Flushing the entire TLB can have minor but noticeable 
adverse effects on performance by unnecessarily flushing TLB entries from ASIDs other than the 
current ASID. If capacity misses would not have evicted the other ASIDs' TLB entries, then those 
TLB entries would be available and useful for avoiding page table walks when the VMM or other 
guests are executed. 

12.8 TLB Flushes in Shadow Paging

Optimization
Use specific TLB_CONTROL encodings to flush a specific ASID’s TLB entries when emulating 
guest TLB flushing events. For more information about using the TLB Control field, please refer to 
section 15.16 “TLB Control” in the AMD64 Architecture Programmer’s Manual Volume 2: System 
Programming.

Application
This optimization applies to:

• VMMs using shadow paging

Rationale
When a VMM is using shadow paging, it must intercept every event in the guest that is defined to 
cause a TLB flush or TLB line invalidation. The most commonly, TLB flushes are triggered by the 
MOV CR3 instruction, while the INVLPG instruction invalidates specified TLB entries. When these 
instructions are intercepted by an AMD-V processor, the TLB flush or invalidation is suppressed; the 
VMM assumes the responsibility for carrying out the appropriate invalidations after performing the 
appropriate shadow page table manipulations. A simplistic solution is to set 
VMCB.TLB_CONTROL to 1 to cause a complete TLB flush on the next VMRUN. This simplistic 
solution may have a negative performance impact due to the complete flushing of global entries and 
TLB entries for all other ASIDs. Notably, when the TLB_CONTROL field is set to 1. the VMM TLB 
entries that might otherwise be useful after #VMEXIT are lost, as well as potentially useful TLB 
entries of other guests. Earlier generations of AMD-V processors did not support Flush By ASID 
VMCB commands, which led to an optimization that involved managing ASIDs.  This optimization 
is functionally correct but is superseded on processors that support Flush By ASID. Earlier 
generations of AMD-V processors did not support Flush By ASID VMCB commands, which led to 
an optimization that involved managing ASIDs.  This optimization is functionally correct but is 
superseded on processors that support Flush By ASID.

When the hypervisor emulates a local TLB flush (for example, a guest CR3 write), it should write 
111b to the TLB_CONTROL field.  The next VMRUN will flush the appropriate local entries for that 
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VMCB’s current ASID, without flushing other ASIDs’ TLB entries.  Similarly, when the hypervisor 
emulates a global TLB flush, it should write 011b to the TLB_CONTROL field.  The hypervisor 
should clear the TLB_CONTROL field before any subsequent VMRUN to avoid redundant 
redundant TLB flushes.

These optimizations are functionally compatible with AMD-V processors that do not support Flush 
By ASID because each of the enhanced encodings of the TLB_COMMAND sets bit 1; however, the 
ASID changing optimization is likely to result in better performance on those processors.

Note that an intercepted INVLPG instruction can be turned into a shadow page table operation 
followed by an INVLPGA instruction and does not necessarily require a TLB flush. 

12.9 Use of Virtual Interrupt VMCB Field

Optimization
Use the Virtual Interrupt VMCB field instead of event injection when there is only one interrupt 
pending for the guest. For more information about using the TLB Control field, please refer to section 
15.16 “TLB Control” in the AMD64 Architecture Programmer’s Manual Volume 2: System 
Programming.

Application
This optimization applies to:

• VMMs, when VMCB.V_INTR_MASKING == 1 for the guest.

Rationale
VMMs commonly do not allow guests direct access to physical interrupts, choosing instead to 
virtualize the interrupts using the V_INTR_MASKING and virtual interrupt mechanisms.

AMD-V processors automatically deliver a pending virtual interrupt to the guest when the guest is not 
masking interrupts due to any of the following:

• Guest EFLAGS.IF == 0

• Guest TPR > priority of pending virtual interrupt

• Guest is in an interrupt shadow

VMMs can avoid the overhead and complexity in software of determining if a guest is ready to take 
the interrupt by appropriately filling the virtual interrupt fields in the guest VMCB, and can avoid one 
or more unnecessary world switches. An AMD-V processor automatically clears the V_IRQ valid bit 
when the interrupt is taken.

By taking these steps, VMMs can provide correct interrupt behavior to the guest while using the 
smallest possible number of world switches.
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12.10 Avoid Instruction Fetch for Intercepted 
Instructions

Optimization
Avoid all guest instruction fetches.

Application
This optimization applies to:

• VMMs

Rationale
On all instruction intercepts, Family 15h processors provide sufficient information in the VMCB to 
allow the hypervisor to avoid fetching guest instruction bytes. This saves the hypervisor the overhead 
of traversing guest page tables and the complexity and overhead of enforcing synchronization with 
other potentially active guest virtual CPUs. The information delivered by the Decode Assists 
corresponds to the instruction as originally fetched from the instruction stream and can be used 
directly by the hypervisor without additional memory synchronization. (For a full description of 
instruction intercepts, see section 15.8, “Instruction Intercepts” in the AMD64 Architecture 
Programmer’s Manual Volume 2: System Programming.)

Additionally, all instructions that directly cause an intercepted data page fault or a nested data page 
fault will deliver up to 15 instrution bytes to allow the hypervisor to decode the instruction without 
traversing the guest page tables. This is useful, for example, when a hypervisor is emulating an 
MMIO access to a device. It should be noted that the instruction bytes may be fetched by the 
processor using data paths. If a hypervisor uses the instruction bytes delivered in the VMCB, it must 
ensure consistency between the instruction and data TLBs by issuing an INVLPGA instruction to 
invalidate the address containing the guest’s rIP (the hypervisor should issue a pair of INVLPGA 
instructions to thebeginning and end bytes of the instruction if the instruction crosses a 4KB aligned 
boundary).  This INVLPGA sequence is required to be executed once before returning to the guest 
vCPU after the use of the instruction bytes.
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12.11 Share IOIO and MSR Protection Maps

Optimization
Share IOIO and MSR protection maps, if possible, to save memory.

Application
This optimization applies to:

• VMMs

Rationale
A VMM running multiple guests typically enforces the same I/O port and MSR restrictions on most 
or all guests in the system. While a VMM must allocate one VMCB per guest virtual CPU, the VMM 
can conserve memory by sharing common IOIO and MSR protection maps. These structures can be 
shared because they are read, but never written, by the CPU. The VMM should be careful about using 
proper mutual exclusion to handle modifications done to protection maps that are in use on other 
CPUs. 

12.12 Obey CPUID Results

Optimization
Guests should obey CPUID results.

Application
This optimization applies to:

• All programs, operating systems, and libraries

Rationale
Any existing or future operating system, program, or library may be executed in a virtualized 
environment. A VMM may control the results of CPUID to hide certain capabilities from the guest 
for various reasons. The VMM may wish to enable migration of a guest from one processor to a 
processor of a different generation with different features enabled. The VMM provides a set of 
CPUID results to its guests that represents a common subset of features. That subset may not 
represent any existing physical processor.

To ensure that programs, libraries, and operating systems work properly in the face of virtualization, 
all software should obey the results returned by CPUID. The most straightforward way to obey 
CPUID is to execute CPUID once per program or library initialization and then record the result in an 
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internal data structure. For example, a program may detect the RDTSCP indicator in CPUID and then 
configure code paths to reflect the presence or absence of RDTSCP. The VMM's control over the 
RDTSCP CPUID bit will cause the program to exhibit the correct behavior based on whether the 
VMM wishes to advertise the fact that the current CPU implements the RDTSCP instruction.

This restriction is eased for existing programs and existing methods to detect processor features that 
already existed at the time AMD-V microprocessors were introduced. For example, before using 
legacy SSE1 instructions, user programs are required to do a try-catch sequence to determine if the 
operating system has enabled the XMM registers. This try-catch sequence is still required for SSE1 
instructions, but software must adhere to the results of CPUID instruction without a try-catch 
sequence for detecting new instructions like the SSE3 instruction set.

Future CPU versions may add new instruction encodings to replace formerly undefined encodings. 
Software should never depend on #UD exceptions from instructions that are currently undefined on 
any given processor. The UD2 opcode should be used if software wishes to create #UD exceptions.

12.13 Using Time Sources

Optimization
Guests should be careful about using time sources.

Application
This optimization applies to:

• All programs, operating systems, and libraries

Rationale
Programs and operating systems that are not virtualization-aware might assume that the RDTSC 
instruction, high precision event timers (HPETs), programmable interrupt timers (PITs), and other 
time sources are monotonically increasing by constant amounts and are usable as a measure of both 
elapsed time and wall-clock time. When a VMM is present, it necessarily intercepts guest operation 
for variable lengths of time, and must make adjustments to the time values read by the guest. These 
adjustments may break one or more assumptions about time sources. A VMM may choose to adjust 
the time sources to synchronize them with a wall-clock time so that the guest's time of day 
measurements are correct, in which case a guest that is continuously monitoring the time will see 
occasional jumps in the apparent wall-clock time; this may cause fairness problems with the guest's 
process scheduling. A VMM may choose to adjust the time sources so the guest correctly measures 
elapsed guest time, which would cause the guest's TSC-based measurement of wall-clock time to be 
incorrect and may affect time-critical applications such as media playback.

It is unlikely that a guest that is unaware of virtualization will be able to use time sources for all 
common purposes at the same time. Users should be aware of these pitfalls and understand their 
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implications. As operating systems and programs are written to be aware of virtualization, they 
should take advantage of any available paravirtualized access to time resources. For their part, VMMs 
should strive to provide a sufficiently rich and standardized set of paravirtualized timer resources. 

12.14 Paravirtualized Resources

Optimization
Guests should detect VMM presence and use paravirtualized resources

Application
This optimization applies to:

• All guests that are aware of virtualization

Rationale
An OS does not implicitly know whether it is a guest or if the OS is running without a VMM present. 
Some VMMs may support paravirtualization as a means to improve performance or create features. 
When this is the case, guests should use industry-standard methods to detect VMMs and enumerate 
the available paravirtualized functions. System resources, such as paging controls in non-nested 
paging environments, time references, network and video drivers, storage and other device drivers 
can benefit from paravirtualization.

12.15 Use VMCB Clean Bits

Optimization
Use the VMCB clean bits to reduce the overhead of VMRUN guest state restore operations.

Application
This optimization applies to:

• VMMs

Rationale
In many cases the VMM operations required to handle instruction and event intercept operations do 
not alter many of the VMCB field values for the intercepted guest. In these cases some of the 
VMRUN overhead required to reload the guest state from the VMCB may be eliminated.

Family 15h processors provide VMCB state caching which allows the processor to store some of the 
guest register state in hardware between a #VMEXIT and subsequent VMRUN. To support this 
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capability a new VMCB field, called the "VMCB Clean Field" is provided to allow the VMM to 
provide an indication to the hardware as to which VMCB fields were not altered during the handling 
of the intercept. The hardware may then use this information to selectively skip reloading portions of 
the guest state during VMRUN processing.

VMM intercept handlers which do not alter any VMCB fields may set all of the bits in the VMCB 
Clean Field value to indicate that all of the cached state is valid. This capability is also backward 
compatible with legacy VMMs that observe the SBZ programming rules for the VMCB Clean Field 
value. For more information about using the VMCB state caching feature, please refer to section 
15.15 "VMCB Clean bits" in the AMD64 Architecture Programmer's Manual Volume 2: System 
Programming.

12.16 Use TSC Ratio to Match Time Sources across 
Platforms

Optimization
Use the Timestamp Counter Ratio feature to adjust the TSC frequency for guest VMs.

Application
This optimization applies to:

• VMMs

Rationale
When migrating virtual machines between platforms with different operating frequencies, there may 
be problems with software that is dependent on a constant frequency TSC. Family 15h processors 
provide a new MSR called "Timestamp Counter Ratio (TscRateMsr)" which allows the frequency of 
the timestamp counter to be scaled to a fraction of the maximum processor frequency of the host 
system. The VMM may set the TSC ratio before entering a guest using VMRUN to present a desired 
frequency to the guest virtual machine and restore the native TSC frequency upon #VMEXIT.

For more information on the Timestamp Counter Ratio MSR, please refer to section 3.12, "MSRs - 
MSRC000_0xxx" in the BIOS and Kernel Developer's Guide (BKDG) for AMD Family 15h Models 
00h-0Fh Processors.



230 Optimizing Secure Virtual Machines Chapter 12

47414 Rev. 3.06 January 2012Software Optimization Guide for AMD Family 15h Processors



Appendix A Implementation of Write-Combining 231

Software Optimization Guide for AMD Family 15h Processors47414 Rev. 3.06 January 2012

Appendix A Implementation of
Write-Combining

This appendix describes the memory write-combining feature implemented in AMD Family 15h 
processors. Write-combining is the merging of multiple memory write cycles that target locations 
within the address range of a write buffer.

AMD Family 15h processors support the memory type range register (MTRR) and the page attribute 
table (PAT) extensions, which allow software to define ranges of memory as either writeback (WB), 
write-protected (WP), writethrough (WT), uncacheable (UC), or write-combining (WC). 

Defining the memory type for a range of memory as WC allows the processor to conditionally 
combine data from multiple write cycles that are addressed within this range into a merge buffer. 
Merging multiple write cycles into a single write cycle reduces processor bus utilization and 
processor stalls. Write combining buffers are also used for streaming store instructions such as 
MOVNTQ and MOVNTI. See “Prefetch and Streaming Instructions” on page 103.

This appendix covers the following topics:

A.1 Write-Combining Definitions and Abbreviations
This appendix uses the following definitions and abbreviations:

• MTRR—Memory type range register

• PAT—Page attribute table

• UC—Uncacheable memory type

• WC—Write-combining memory type

• WT—Writethrough memory type

• WP—Write-protected memory type

• WB—Writeback memory type

Topic Page
Write-Combining Definitions and Abbreviations 231
Programming Details 232
Write-Combining Operations 232
Sending Write-Buffer Data to the System 233
Write Combining to MMI/O Devices that Support Write Chaining 233
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A.2 Programming Details
Write-combining regions are controlled by the MTRRs and PAT extensions. Write-combining should 
be enabled for the appropriate memory ranges. (For more information on the MTRRs and the PAT 
extensions, see the AMD64 Architecture Programmer’s Manual, Volume 2, order# 24593, the BIOS 
and Kernel Developer’s Guide for AMD Family 15h Processors, order# 31116, the BIOS and Kernel 
Developer’s Guide for AMD Family 15h Processors Models 10h-1Fh, order# 42300, the BIOS and 
Kernel Developer’s Guide for AMD Family 15h Processors Models 20h-2Fh, order# 48023, the BIOS 
and Kernel Developer’s Guide for AMD Family 15h Processors Models 30h-3Fh, order# 49125 and 
49126, the BIOS and Kernel Developer’s Guide for AMD Family 15h Processors Models 40h-4Fh, 
order# 49127, and the BIOS and Kernel Developer’s Guide for AMD Family 15h Processors Models 
00h-0Fh, order# 48751.)

A.3 Write-Combining Operations
To improve system performance, AMD Family 15h processors aggressively combine multiple 
memory-write cycles of any data size that address locations within a 64-byte write buffer that is 
aligned to a cache-line boundary. The processor continues to combine writes to this buffer without 
writing the data to the system, as long as certain rules apply (see Table 7 for more information). The 
data sizes can be bytes, words, doublewords, or quadwords.

• WC memory type writes can be combined in any order up to a full 64-byte write buffer.

• All other memory types for stores that go through the write buffer (UC, WP, WT and WB) cannot 
be combined except when the WB memory type is over-ridden for streaming store instructions 
such as the MOVNTQ and MOVNTI instructions, etc. These instructions use the write buffers 
and will be write-combined in the same way as address spaces mapped by the MTTR registers 
and PAT extensions. When WCB is used for streaming store instructions, the buffers are subject to 
the same flushing events as write-combined address spaces.

Combining continues until interrupted by one of the conditions listed in Table 7. When combining is 
interrupted, one or more bus commands are issued to the system for that write buffer and all older 
write buffers, even if they are not full, as described in “Sending Write-Buffer Data to the System” on 
page 233.

Table 7. Write-Combining Completion Events
Event Comment
I/O Read or Write Any IN/INS or OUT/OUTS instruction closes combining. The implied 

memory type for all IN/OUT instructions is UC, which cannot be 
combined.

Serializing instructions Any serializing instruction closes combining. These instructions 
include: MOVCRx, MOVDRx, WRMSR, INVD, INVLPG, WBINVD, 
LGDT, LLDT, LIDT, LTR, CPUID, IRET, RSM, INIT, and HALT.

Flushing instructions CLFLUSH will only close the WCB if it is for WC or UC memory type.
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A.4 Sending Write-Buffer Data to the System
Maximum throughput is achieved by write combining when all quadwords or doublewords are valid 
and the AMD Family 15h processors can use one efficient 64-byte memory write instead of multiple 
8-byte memory writes.

A.5 Write Combining to MMI/O Devices that Support 
Write Chaining

AMD Family 15 processors implement write combining through the use of a 4KB, 4-way set 
associative write coalescing cache (WCC) and a 64 byte, 4 entry write combining buffer (WCB), 
where each buffer is 64B wide. The data in the WCC is inclusive with the L2 data cache, implying 
that write data in this cache is globally visible.  It will only contain writes for the writeback memory 
type. Recall that streaming store instructions enable write combining for the writeback memory type. 
These writes, as well as writes to other memory types, including the write combining (WC) memory 
type, occur in the WCB, and are not globally visible until flushed from the WCB to main memory. 
Because writes to writeback memory are globally visible in the WCC, they may require data to be 
flushed from the WCB to ensure the enforcement of ordering rules between writes to different 
memory types. The 4K WCC thus provides 64 write-combining buffers for the WB memory type, 
each 64 bytes wide.  For the WC memory type, writes can be combined up to the capacity of the 
WCB, allowing for 64 byte writes to the system.

Locks Any instruction or processor operation that requires a cache or bus 
lock closes write-combining before starting the lock. Writes within a 
lock can be combined.

Uncacheable Read A UC read closes write-combining. A WC read closes combining 
only if a cache block address match occurs between the WC read 
and a write in the write buffer.

Different memory type When a store hits on a write buffer that has been written to earlier 
with a different memory type than that store, the buffer is closed and 
flushed.

Buffer full Write-combining is closed if all 64 bytes of the write buffer are valid.
TLB AD bit set Write-combining is closed whenever a TLB reload sets the accessed 

[A] or dirty [D] bits of a PDE or PTE.
Executing SFENCE (Store Fence) 
and MFENCE (Memory Fence) 
instructions.

These instructions force the completion of pending stores, including 
those within the WC memory type, making these globally visible and 
emptying the store buffer and all write-combining buffers.

An interrupt or exception occurs. Interrupts and exceptions are serializing events that force the 
processor to write all results to memory before fetching the first 
instruction from the interrupt or exception service routine

Table 7. Write-Combining Completion Events (Continued)
Event Comment
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Having multiple write-combining buffers that can combine independent WC streams has implications 
on data throughput rates (bandwidth), especially when data is written by the CPU to WC memory 
mapped I/O devices, residing on the AGP, PCI, PCI-X® and PCI Express® buses including:  

• Memory Mapped I/O registers—command FIFO, etc.

• Memory Mapped I/O apertures—windows to which the CPU uses programmed I/O to send data 
to a hardware device

• Sequential block of 2D/3D graphic engine registers written using programmed I/O

• Video memory residing on the graphics accelerator—frame buffer, render buffers, textures, etc.

HyperTransport™ Tunnels and Write Chaining
HyperTransport™ tunnels are HyperTransport-to-bus bridges. Many HyperTransport tunnels use a 
hardware optimization feature called write-chaining. In write-chaining, the tunnel device buffers and 
combines separate HyperTransport packets of data sent by the CPU, creating one large burst on the 
underlying bus when the data is received by the tunnel in sequential address order. Using larger bursts 
results in better throughput since bus efficiency is increased. This is because bus arbitration overhead 
is lower: only one address/attribute phase is issued per burst in the PCI-X case, and one 
address/command phase is issued for the AGP Fast Writes case.

For reasons cited in the preceding paragraph, to utilize hardware write chaining efficiently, software 
should flush the CPU write-combining buffer in sequential linear address order, any time a target 
GB/s hardware device is capable of receiving large bursts of CPU write data. 

Software should be aware that on AMD64 processors that have multiple write-combining buffers, 
events that flush the write-combining buffers (see Table 7 on page 232) do so in the order that the 
streams were opened. For example, if the CPU writes to the WC space in the 64-byte buffer at the 
highest address first (say, address 40h), followed by a write to a lower 64-byte buffer (for example, 
address 00h), the CPU first sends the highest addressed 64-byte buffer by HyperTransport to the 
tunnel, followed by the second (lower address) 64-byte buffer.  Since the addressing is not sequential 
the tunnel device will not chain both 64-byte WC buffers and must issue two separate transactions on 
the target bus.

If the buffers in this example were targeted for AGP fast writes, issuing two fast write transactions 
(rather than issuing one fast write transaction) would reduce the bandwidth (data throughput) by one-
third. 

Optimizations
Adhere to the following guidelines to ensure that AMD Family 15h processors issue WC buffers in 
sequential address order: 

• When practical, shadow the data structure in memory (rather than writing the actual WC buffer in 
MMI/O space), prior to copying the structure to WC MMI/O space. This will also ensure that the 
write-combining buffers are not emptied prematurely by external events (such as a UC read—
perhaps issued by another device driver thread or a hardware interrupt, etc.). Shadowing also 
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ensures that writes that occur to different cache lines in the structure do not send out the WC 
buffers, since the number of WC buffers that can be open at one time is CPU implementation 
dependent.

• When ready to update the actual WC MMI/O address space, copy the shadowed structure from 
memory to MMI/O, from the lowest address 64-byte block upward. To do the copy, use discrete 
loads and stores for up to 64 bytes of data. Use a loop of discrete loads and stores for up to 4KB of 
data.  Use REP MOVS instructions for up to 32KB of data. To do discrete loads use assembly 
language, or, if available, compiler intrinsic functions available (__movsb(), __movsw(),  
__movsd()), etc. (For more information, see section 6.8 “Memory and String Routines” on 
page 113.)

• In general, using these methods to do the copy will exhibit less overhead in a data movement 
function than calling a memcpy() LIBC function, which is usually optimized for copying larger 
blocks of memory.
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Appendix B Instruction Latencies

This appendix provides a listing of AMD64 instructions, decode types, and execution latencies. For 
more information on these instructions, see the AMD64 Architecture Programmer’s Manual, 
Volumes 3, 4, and 5 (order# 24594, 26568, and 26569).

The instruction entries in this appendix are grouped into categories as follows and are presented 
within each category in alphabetical order by mnemonic:

B.1 Understanding Instruction Entries
To use the information in this appendix effectively, you need to understand how the entry for an 
instruction is organized and how to interpret certain items.

Example: Instruction Entry
The entry for an instruction begins with its syntax. Subsequent columns provide additional 
information about the instruction.

Topic Page
Understanding Instruction Entries 237
General Purpose and Integer Instruction Latencies 241
System Instruction Latencies 254
FPU Instruction Latencies 257
Amended Latency for Selected Instructions 314

Syntax Decode Type FPU Pipe(s) Latencies Comments
ADDPD_mem FMA(P0 | P1) FastPath Single 10 4
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Components of the Instruction Entry
Columns in the latency tables are defined as follows. Not all categories are relevant to all instruction 
sets. Thus, only the pipe and latency are relevant to system instructions, general purpose instruction 
latency tables use all five categories.

Decode Type

The decode type hierarchy, from simplest to most complex is: 
FastPath Single↔FastPath Double↔Microcode.

Pipes

EX0 and EX1 represent the ALU execution units.

AG0 and AG1 represent the address generation units.

Interpreting FPU Pipe Assignments

The following table shows hows each of the four pipes are mapped to floating-point units in the AMD 
family 15h architecture.

Category Description
Syntax Shows the syntax for the instruction—the permitted arrangement of its parts. Items in italics are 

placeholders for operands that you must provide. For information on how to interpret the 
placeholders, see “Interpreting Placeholders” on page 239

Instruction This category is used by the FPU instruction latency table to specify the format of an FPU 
instruction (e.g., reg–mem or reg–reg). For details on how to interpret the instruction format, see 
“Interpreting Instruction Format” on page 239.

Pipes Lists the possible floating-point unit (FPU) pipeline available for use by any particular FastPath 
single, FastPath Double or microcoded operation.

Decode type Shows the method that the processor uses to decode the instruction—FastPath Single, FastPath 
Double, or microcode.

Latency Shows the static execution latency for the instruction. For details on how to interpret the latency 
information, see “Interpreting Latencies” on page 239.

Comments Specifies clarifying information

Note: Each instruction mnemonic that is commented as “Repeat After 2 Cycles” can issue the instruction at the indicated 
number of interval cycles.

Table 8. Mapping of Pipes to Floating-Point Units
Pipe 0 Pipe 1 Pipe 2 Pipe 3
FPFMA

fmul, fadd, fmac
FPFMA

fmul, fadd, fmac
FPMAL

avx, simd, mmx, ALU
FPMAL

avx, simd, mmx, ALU
FPCVT

fconverts
FPXBR

shuffles, packs, permutes
FPSTO
fpstore

FPMMA
avx, simd, mmx, multiplier
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As indicated above, some floating point units (FPFMA, FPMAL) map to multiple pipes. This means, 
for example, that the VFMADDPS instruction can map to either pipe 0 or pipe 1. In the latency table 
for the FPU instructions, each instruction mapping is displayed in the Pipes column.

Interpreting Placeholders
The Syntax column for an instruction entry shows the mnemonic for the instruction followed by any 
operands. Items in italics are placeholders for operands that you must provide. A placeholder 
indicates the size and type of operand that is allowed.

Interpreting Instruction Format
An entry in the 'Instruction' category takes the form mnemonic_optype, combining an instruction 
name with the type of its operand. This signature uniquely identifies the particular form of the 
instruction. For example, ADDPD_mem represents the memory form of the instruction (ADDPD xmm1, 
mem128) while ADDPD_reg represents the register form (ADDPD xmm1, xmm2). In some cases, a form 
such as mem32 is used for sake of brevity to identify special cases of memory size. For more 
information on these instructions, see the AMD64 Architecture Programmer's Manual, Volumes 3, 4, 
and 5.

Interpreting Latencies
The Latency column for an instruction entry shows the static execution latency for the instruction. 
The static execution latency is the number of clock cycles it takes to execute the serially dependent 
sequence of micro-ops that comprise the instruction.

The latencies in this appendix are estimates and are subject to change. They assume that:

This operand Is a placeholder for
reg A general-purpose register
mmrx An MMX™ register
xmm A 128-bit SIMD register
ST(i) X87 stack register
mem, mem(32/64 A memory location
imm An immediate value
disp A memory displacement or offset
pm32 Arelative offset
x/y Operand type x or y
x (mem) Operand type x or mem (used only for media instructions)
fn0x2 CPUID-specific information
near/far Semantics for CALL instructions
Note: Operands with numbers indicate operand sizes, for example mem32/64 indicates that this operand can either be a 

32-bit or a 64-bit memory location.  When sizes are not indicated, the information in the entry is identical for any 
legal operand size.  Please consult the AMD64 Architecture Programmer’s Manual Volumes 3–5 to determine the 
legal operand sizes for a given instruction type.
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• The instruction is an L1-cache hit that has already been fetched and decoded, with the operations 
loaded into the scheduler.

• Memory operands are in the L1 data cache.

• There is no contention for execution resources or load-store unit resources.

Each latency in the table denotes the typical execution time of the instruction when run in isolation on 
a processor with any referenced memory locations already in the L1 cache.  For real programs 
executed on this highly aggressive superscalar family of processors, multiple instructions can execute 
simultaneously; therefore, the effective latency for any given instruction's execution may be 
overlapped with the latency of other instructions executing in parallel.  An example of this effect can 
be seen for an SIMD load-compute instruction like ADDPD reg, mem, which effectively adds 4 cycles 
of latency (10 cycles total) over ADDPD reg, reg, which uses 6 cycles when run in isolation.  In a 
real program, however, the load portion of the instruction often occurs in parallel with earlier work, 
effectively hiding the extra 4 cycles from the critical execution path.  There are also other cases of 
additional latencies that may be incurred in a real program that are not described in the latency table, 
such as delays caused by L1 cache misses or contention for execution or load-store unit resources.

The following formats are used to indicate the static execution latency:

Table 9. Latency Formats

Latency format Description Example
x The latency is the indicated value. 3
x/y The latency is additive according to the pipe used for executing the 

instruction. A latency entry of this format occurs when the pipe entry is of the 
form a/b; latency x corresponds to pipe a and latency y corresponds to pipe 
b, meaning total latency is effectively x + y.

6/10
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B.2 General Purpose and Integer Instruction 
Latencies

The latency table for general purpose and integer instructions gives the decode type and latency
corresponding to each instruction mnemonic. For more detailed information on the operation of a
particular general purpose integer instruction, as well as encoding information, see the AMD64
Architecture Programmer’s Manual Volume 3: General-Purpose and System Instructions, order#
24594.

Table 10. General Purpose and Integer Instruction Latencies

Syntax Pipes Decode Type Latencies Comments

AAA microcode microcode NA

AAD microcode microcode NA

AAM microcode microcode NA

AAS microcode microcode NA

ADC reg, reg EX0 | EX1 FastPath Single 1

ADC reg, imm EX0 | EX1 FastPath Single 1

ADC mem, reg EX0 | EX1 FastPath Single 5

ADC mem, imm EX0 | EX1 FastPath Single 5

ADC reg, mem EX0 | EX1 FastPath Single 5

ADD reg, reg EX0 | EX1 FastPath Single 1

ADD reg, imm EX0 | EX1 FastPath Single 1

ADD  mem, reg EX0 | EX1 FastPath Single 5

ADD  mem, imm EX0 | EX1 FastPath Single 5

ADD reg, mem EX0 | EX1 FastPath Single 5

AND reg, reg EX0 | EX1 FastPath Single 1

AND reg, imm EX0 | EX1 FastPath Single 1

AND  mem, reg EX0 | EX1 FastPath Single 5

AND  mem, imm EX0 | EX1 FastPath Single 5

AND reg, mem EX0 | EX1 FastPath Single 5

ANDN reg, reg, reg EX0 | EX1 FastPath Single 1

ANDN reg, reg, mem EX0 | EX1 FastPath Single 5

BEXTR reg, reg, reg EX0 | EX1 FastPath Double 2

32-bit/64-bit instructions of 
this form can also issue to 
AG0 or AG1 for Models 20h 
and greater

BEXTR reg, mem, reg EX0 | EX1 FastPath Double 6
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BEXTR reg, reg, imm EX0 | EX1 FastPath Double 2

BEXTR reg, mem, imm EX0 | EX1 FastPath Double 6

BLCFILL reg, reg EX0 | EX1 FastPath Double 2

BLCFILL reg, mem EX0 | EX1 FastPath Double 6

BLCI reg, reg EX0 | EX1 FastPath Double 2

BLCI reg, mem EX0 | EX1 FastPath Double 6

BLCIC reg, reg EX0 | EX1 FastPath Double 2

BLCIC reg, mem EX0 | EX1 FastPath Double 6

BLCMSK reg, reg EX0 | EX1 FastPath Double 2

BLCMSK reg, mem EX0 | EX1 FastPath Double 6

BLCS reg, reg EX0 | EX1 FastPath Double 2

BLCS reg, mem EX0 | EX1 FastPath Double 6

BLSFILL reg, reg EX0 | EX1 FastPath Double 2

BLSFILL reg, mem EX0 | EX1 FastPath Double 6

BLSI reg, reg EX0 | EX1 FastPath Double 2

BLSI reg, mem EX0 | EX1 FastPath Double 6

BLSIC reg, reg EX0 | EX1 FastPath Double 2

BLSIC reg, mem EX0 | EX1 FastPath Double 6

BLSMSK reg, reg EX0 | EX1 FastPath Double 2

BLSMSK reg, mem EX0 | EX1 FastPath Double 6

BLSR reg, reg EX0 | EX1 FastPath Double 2

BLSR reg, mem EX0 | EX1 FastPath Double 6

BOUND reg32, mem64 microcode microcode NA

BSF reg, reg microcode microcode NA

BSF reg, mem microcode microcode NA

BSR reg, reg microcode microcode NA

BSR reg, mem microcode microcode NA

BSWAP reg EX0 | EX1 FastPath Single 1

BT reg, reg EX0 | EX1 FastPath Single 1

BT reg, imm EX0 | EX1 FastPath Single 1

BT  mem, imm microcode microcode 8

BT  mem, reg microcode microcode 8

BTC reg, reg EX0 | EX1 FastPath Single 2

BTC reg, imm EX0 | EX1 FastPath Single 2

Table 10. General Purpose and Integer Instruction Latencies (Continued)

Syntax Pipes Decode Type Latencies Comments



Appendix B Instruction Latencies 243

Software Optimization Guide for AMD Family 15h Processors47414 Rev. 3.06 January 2012

BTC  mem, imm microcode microcode 10

BTC  mem, reg microcode microcode 14

BTR reg, reg EX0 | EX1 FastPath Single 2

BTR reg, imm EX0 | EX1 FastPath Single 2

BTR  mem, imm microcode microcode 10

BTR  mem, reg microcode microcode 14

BTS reg, reg EX0 | EX1 FastPath Single 2

BTS reg, imm EX0 | EX1 FastPath Single 2

BTS  mem, imm microcode microcode 10

BTS  mem, reg microcode microcode 14

CALL disp (near) AG0 | AG1
EX0 | EX1 FastPath Double 2 First op to AG0 | AG1,

Second to EX0 | EX1

CALL reg (near) AG0 | AG1
EX0 | EX1 FastPath Double 2 First op to AG0 | AG1,

Second to EX0 | EX1

CALL  mem (near) AG0 | AG1
EX0 | EX1 FastPath Double 6 First op to AG0 | AG1,

Second to EX0 | EX1

CBW EX0 | EX1 FastPath Single 1

CWDE EX0 | EX1 FastPath Single 1

CDQE EX0 | EX1 FastPath Single 1

CWD EX0 | EX1 FastPath Double 1

CDQ EX0 | EX1 FastPath Single 1

CQO EX0 | EX1 FastPath Single 1

CLC EX0 | EX1 FastPath Single 1

CLD microcode microcode NA

CMC EX0 | EX1 FastPath Single 1

CMOVcc reg, reg EX0 | EX1 FastPath Single 1

CMOVcc reg, mem EX0 | EX1 FastPath Single 5

CMP reg, reg EX0 | EX1 FastPath Single 1 If branch fused, op to EX1, 
else op to EX0 | EX1

CMP reg, imm EX0 | EX1 FastPath Single 1 If branch fused, op to EX1, 
else op to EX0 | EX1

CMP  mem, reg EX0 | EX1 FastPath Single 5 If branch fused, op to EX1, 
else op to EX0 | EX1

CMP  mem, imm EX0 | EX1 FastPath Single 5 If branch fused, op to EX1, 
else op to EX0 | EX1

CMP reg, mem EX0 | EX1 FastPath Single 5 If branch fused, op to EX1, 
else op to EX0 | EX1

Table 10. General Purpose and Integer Instruction Latencies (Continued)

Syntax Pipes Decode Type Latencies Comments
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CMPS microcode microcode NA

CMPSB microcode microcode NA

CMPSW microcode microcode NA

CMPSD microcode microcode NA

CMPSQ microcode microcode NA

CMPXCHG reg, reg microcode microcode 3

CMPXCHG mem8, reg8 microcode microcode 7

CMPXCHG mem16, reg16 microcode microcode 6

CMPXCHG mem32, reg32 microcode microcode 6

CMPXCHG  mem64, reg64 microcode microcode 6

CMPXCHG8B mem64 microcode microcode 7

CMPXCHG16B mem128 microcode microcode 6

CPUID fn0x0 microcode microcode 115

CPUID fn0x1 microcode microcode 58

CPUID fn0x2 microcode microcode 126

CPUID fn0x3 microcode microcode 126

CPUID fn0x4 microcode microcode 126

CPUID fn0x5 microcode microcode 119

CPUID fn0x6 microcode microcode 124

CPUID fn0x7 microcode microcode 126

CPUID fn0x8 microcode microcode 126

CPUID fn0x9 microcode microcode 126

CPUID fn0xA microcode microcode 126

CPUID fn0xB microcode microcode 87

CPUID fn0xC microcode microcode 126

CPUID fn0xD microcode microcode 155

DAA microcode microcode NA

DAS microcode microcode NA

DEC reg EX0 | EX1 FastPath Single 1

DEC  mem EX0 | EX1 FastPath Single 5

DIV reg microcode microcode See “Optimizing Integer 
Division” on page 161.

DIV  mem microcode microcode See “Optimizing Integer 
Division” on page 161.

Table 10. General Purpose and Integer Instruction Latencies (Continued)

Syntax Pipes Decode Type Latencies Comments
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ENTER imm32, 0 microcode microcode NA

ENTER imm32,1 microcode microcode NA

ENTER imm32, 2 microcode microcode NA

IDIV reg microcode microcode See “Optimizing Integer 
Division” on page 161.

IDIV  mem microcode microcode See “Optimizing Integer 
Division” on page 161.

IMUL reg8 EX1 FastPath Single 4 Repeat after 2 cyles.

IMUL reg16 EX1 FastPath Double 4 Repeat after 2 cyles.

IMUL reg16, imm16 EX1 FastPath Double 4 Repeat after 2 cyles.

IMUL reg16, mem16 EX1 FastPath Double 8 Repeat after 2 cyles.

IMUL reg16, mem16, imm EX1 FastPath Double 8 Repeat after 2 cyles.

IMUL reg16, reg16 EX1 FastPath Double 4 Repeat after 2 cyles.

IMUL reg16, reg16, imm EX1 FastPath Double 4 Repeat after 2 cyles.

IMUL reg32 EX1 FastPath Single 4 Repeat after 2 cyles.

IMUL reg32, imm32 EX1 FastPath Single 4 Repeat after 2 cyles.

IMUL reg32, mem32 EX1 FastPath Single 8 Repeat after 2 cyles.

IMUL reg32, mem32, imm EX1 FastPath Single 8 Repeat after 2 cyles.

IMUL reg32, reg32 EX1 FastPath Single 4 Repeat after 2 cyles.

IMUL reg32, reg32, imm EX1 FastPath Single 4 Repeat after 2 cyles.

IMUL reg64 EX1 FastPath Single 6 Repeat after 4 cyles.

IMUL reg64, imm32 EX1 FastPath Single 6 Repeat after 4 cyles.

IMUL reg64, mem64 EX1 FastPath Single 10 Repeat after 4 cyles.

IMUL reg64, mem64, imm EX1 FastPath Single 10 Repeat after 4 cyles.

IMUL reg64, reg64 EX1 FastPath Single 6 Repeat after 4 cyles.

IMUL reg64, reg64, imm32 EX1 FastPath Single 6 Repeat after 4 cyles.

IMUL mem8 EX1 FastPath Single 8 Repeat after 2 cyles.

IMUL mem16 EX1 FastPath Single 8 Repeat after 2 cyles.

IMUL mem32 EX1 FastPath Single 8 Repeat after 2 cyles.

IMUL mem64 EX1 FastPath Single 8 Repeat after 4 cyles.

INC reg EX0 | EX1 FastPath Single 1

INC  mem EX0 | EX1 FastPath Single 5

Jcc disp EX0 | EX1 FastPath Single 1

JCXZ disp EX0 | EX1 FastPath Single 1

Table 10. General Purpose and Integer Instruction Latencies (Continued)
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JECXZ disp EX0 | EX1 FastPath Single 1

JRCXZ disp EX0 | EX1 FastPath Single 1

JMP reg (near) EX0 | EX1 FastPath Single 1

JMP disp (near) EX0 | EX1 FastPath Single 1

JMP  mem (near) EX0 | EX1 FastPath Single 5

JMP disp (far, no call gate) microcode microcode NA

JMP  mem (far, no call gate) microcode microcode NA

LAHF EX0 | EX1 FastPath Single 4

LEA reg16, mem (2 operands) EX0 | EX1 FastPath Single 1

LEA reg16, mem (3 operands) EX0 | EX1
AG0 | AG1 FastPath Double 2 First op to  AG0 | AG1,

Second to EX0 | EX1.

LEA reg32, mem (2 operands) EX0 | EX1 FastPath Single 1

LEA reg32, mem (3 operands) EX0 | EX1
AG0 | AG1 FastPath Double 2 First op to  AG0 | AG1,

Second to EX0 | EX1.

LEA reg64, mem (2 operands) EX0 | EX1 FastPath Single 1

LEA reg64, mem (3 operands) EX0 | EX1
AG0 | AG1 FastPath Double 2 First op to  AG0 | AG1,

Second to EX0 | EX1.

LEAVE microcode microcode NA

LLWPCB reg microcode microcode NA

LODS microcode microcode NA

LODSB microcode microcode NA

LODSW microcode microcode NA

LODSD microcode microcode NA

LOOP/LOOPcc pm32 EX0 | EX1 FastPath Single 1

LOOPcc pm32 EX0 | EX1 FastPath Single 1

LOOP EX0 | EX1 FastPath Single 1

LOOPcc pm64 EX0 | EX1 FastPath Single 1

LWPVAL reg, reg32, imm32 microcode microcode NA

LWPVAL reg, mem32, imm32 microcode microcode NA

LWPINS reg, reg, imm microcode microcode NA

LWPINS reg, reg, imm microcode microcode NA

LZCNT reg, reg EX1 FastPath Double 2

LZCNT reg, mem EX1 FastPath Double 6

LZCNT reg, mem16 EX1 FastPath Double 6

LZCNT reg, mem32 EX1 FastPath Double 6

Table 10. General Purpose and Integer Instruction Latencies (Continued)
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LZCNT reg, mem64 EX1 FastPath Double 6

MOV reg, reg

EX0 | EX1 FastPath Single 1

32-bit/64-bit instructions of 
this form can also issue to 
AG0 or AG1 for Models 20h 
and greater

MOV reg, mem8 EX0 | EX1 FastPath Single 5

MOV reg, mem16 EX0 | EX1 FastPath Single 5

MOV reg, mem32 EX0 | EX1 FastPath Single 4

MOV reg, mem63 EX0 | EX1 FastPath Single 4

MOV  mem, reg EX0 | EX1 FastPath Single 4

MOV  mem, imm EX0 | EX1 FastPath Single 4

MOV mem16, FS microcode microcode NA

MOV mem32, SS microcode microcode NA

MOV mem32, DS microcode microcode NA

MOV reg32, SS microcode microcode NA

MOV reg32, DS microcode microcode NA

MOV reg32, FS microcode microcode NA

MOV reg64, FS microcode microcode NA

MOV SS, mem32 microcode microcode NA

MOV SS, reg32 microcode microcode NA

MOV DS, mem32 microcode microcode NA

MOV DS, reg32 microcode microcode NA

MOV FS, mem16 microcode microcode NA

MOV FS, reg32 microcode microcode NA

MOV FS, reg64 microcode microcode NA

MOVNTI  mem, reg EX0 | EX1 FastPath Single 1

MOVS microcode microcode NA

MOVSB microcode microcode NA

MOVSW/ microcode microcode NA

MOVSD microcode microcode NA

MOVSQ microcode microcode NA

MOVSX reg, reg EX0 | EX1 FastPath Single 1

MOVSX reg, mem EX0 | EX1 FastPath Single 5

MOVSXD reg, reg EX0 | EX1 FastPath Single 1

MOVSXD reg, mem EX0 | EX1 FastPath Single 5

Table 10. General Purpose and Integer Instruction Latencies (Continued)
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MOVZX reg, reg EX0 | EX1 FastPath Single 1

MOVZX reg, mem EX0 | EX1 FastPath Single 4

MUL reg8 EX1 FastPath Single 4 Repeat after 2 cycles.

MUL reg16 EX1 FastPath Single 4 Repeat after 2 cycles.

MUL reg32 EX1 FastPath Single 4 Repeat after 2 cycles.

MUL reg64 EX1 FastPath Single 6 Repeat after 4 cycles.

MUL mem8 EX1 FastPath Single 8 Repeat after 2 cycles.

MUL mem16 EX1 FastPath Single 8 Repeat after 2 cycles.

MUL mem32 EX1 FastPath Single 8 Repeat after 2 cycles.

MUL mem64 EX1 FastPath Single 10 Repeat after 4 cycles.

NEG reg EX0 | EX1 FastPath Single 1

NEG  mem EX0 | EX1 FastPath Single 5

NOP EX0 | EX1 FastPath Single 0 No resources mapped.

NOT reg EX0 | EX1 FastPath Single 1

NOT  mem EX0 | EX1 FastPath Single 5

OR reg, reg EX0 | EX1 FastPath Single 1

OR reg, imm EX0 | EX1 FastPath Single 1

OR  mem, reg EX0 | EX1 FastPath Single 5

OR  mem, imm EX0 | EX1 FastPath Single 5

OR reg, mem EX0 | EX1 FastPath Single 5

POP reg16 EX0 | EX1 FastPath Double 1

POP reg32 EX0 | EX1 FastPath Single 1

POP reg64 EX0 | EX1 FastPath Single 1

POP  mem EX0 | EX1 FastPath Double 1

POP DS microcode microcode NA

POP ES microcode microcode NA

POP FS microcode microcode NA

POP GS microcode microcode NA

POP SS microcode microcode NA

POPA microcode microcode NA

POPAD microcode microcode NA

POPCNT reg16, reg16 EX1 FastPath Single 4 can only issue 1 per cycle

POPCNT reg32, reg32 EX1 FastPath Single 4 can only issue 1 per cycle

Table 10. General Purpose and Integer Instruction Latencies (Continued)
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POPCNT reg64, reg64 EX1 FastPath Single 6 can only issue 1 every 4 
cycles

POPCNT reg16, mem16 EX1 FastPath Single 8 can only issue 1 per cycle

POPCNT reg32, mem32 EX1 FastPath Single 8 can only issue 1 per cycle

POPCNT reg64, mem64 EX1 FastPath Single 10 can only issue 1 every 4 
cycles

POPF microcode microcode NA

POPFD microcode microcode NA

POPFQ microcode microcode NA

PUSH reg EX0 | EX1 FastPath Single 1

PUSH imm EX0 | EX1 FastPath Single 1

PUSH  mem EX0 | EX1 FastPath Double 1

PUSH CS EX0 | EX1 FastPath Double 1

PUSH DS EX0 | EX1 FastPath Double 1

PUSH ES EX0 | EX1 FastPath Double 1

PUSH FS EX0 | EX1 FastPath Double 1

PUSH GS EX0 | EX1 FastPath Double 1

PUSH SS EX0 | EX1 FastPath Double 1

PUSHA microcode microcode NA

PUSHAD microcode microcode NA

PUSHF microcode microcode NA

PUSHFD microcode microcode NA

PUSHFQ microcode microcode NA

RCL reg, 1 EX0 | EX1 FastPath Single 1

RCL reg, imm microcode microcode NA

RCL reg, CL microcode microcode NA

RCL  mem, 1 EX0 | EX1 FastPath Single 5

RCL  mem, imm microcode microcode NA

RCL  mem, CL microcode microcode NA

RCR reg, 1 EX0 | EX1 FastPath Single 1

RCR reg, imm microcode microcode NA

RCR reg, CL microcode microcode NA

RCR  mem, 1 EX0 | EX1 FastPath Single 5

RCR  mem, imm microcode microcode NA

Table 10. General Purpose and Integer Instruction Latencies (Continued)
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RCR  mem, CL microcode microcode NA

RET EX0 | EX1 FastPath Single 5

RET imm16 microcode microcode NA

ROL reg, 1 EX0 | EX1 FastPath Single 1

ROL reg, CL EX0 | EX1 FastPath Single 1

ROL reg, imm EX0 | EX1 FastPath Single 1

ROL  mem, 1 EX0 | EX1 FastPath Single 5

ROL  mem, CL EX0 | EX1 FastPath Single 5

ROL  mem, imm EX0 | EX1 FastPath Single 5

ROR reg, 1 EX0 | EX1 FastPath Single 1

ROR reg, CL EX0 | EX1 FastPath Single 1

ROR reg, imm EX0 | EX1 FastPath Single 1

ROR  mem, 1 EX0 | EX1 FastPath Single 5

ROR  mem, CL EX0 | EX1 FastPath Single 5

ROR  mem, imm EX0 | EX1 FastPath Single 5

SAHF EX0 | EX1 FastPath Double 2

SAL reg EX0 | EX1 FastPath Single 1

SAL reg, 1 EX0 | EX1 FastPath Single 1

SAL reg, CL EX0 | EX1 FastPath Single 1

SAL reg, imm EX0 | EX1 FastPath Single 1

SAL  mem, 1 EX0 | EX1 FastPath Single 5

SAL  mem, CL EX0 | EX1 FastPath Single 5

SAL  mem, imm EX0 | EX1 FastPath Single 5

SHL reg, 1 EX0 | EX1 FastPath Single 1

SHL reg, CL EX0 | EX1 FastPath Single 1

SHL reg, imm EX0 | EX1 FastPath Single 1

SHL  mem, 1 EX0 | EX1 FastPath Single 5

SHL  mem, CL EX0 | EX1 FastPath Single 5

SHL  mem, imm EX0 | EX1 FastPath Single 5

SAR reg, 1 EX0 | EX1 FastPath Single 1

SAR reg, CL EX0 | EX1 FastPath Single 1

SAR reg, imm EX0 | EX1 FastPath Single 1

SAR  mem, 1 EX0 | EX1 FastPath Single 5

SAR  mem, CL EX0 | EX1 FastPath Single 5

Table 10. General Purpose and Integer Instruction Latencies (Continued)
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SAR  mem, imm EX0 | EX1 FastPath Single 5

SBB reg, reg EX0 | EX1 FastPath Single 1

SBB reg, imm EX0 | EX1 FastPath Single 1

SBB  mem, reg EX0 | EX1 FastPath Single 5

SBB  mem, imm EX0 | EX1 FastPath Single 5

SBB reg, mem EX0 | EX1 FastPath Single 5

SCAS microcode microcode NA

SCASB microcode microcode NA

SCASW microcode microcode NA

SCASD microcode microcode NA

SCASQ microcode microcode NA

SETcc reg EX0 | EX1 FastPath Single 1

SETcc  mem EX0 | EX1 FastPath Single 5

SHLD reg, reg, CL microcode microcode NA

SHLD reg, reg, imm microcode microcode NA

SHLD  mem, reg, CL microcode microcode NA

SHLD  mem, reg, imm microcode microcode NA

SHR reg, 1 EX0 | EX1 FastPath Single 1

SHR reg, CL EX0 | EX1 FastPath Single 1

SHR reg, imm EX0 | EX1 FastPath Single 1

SHR  mem, 1 EX0 | EX1 FastPath Single 5

SHR  mem, CL EX0 | EX1 FastPath Single 5

SHR  mem, imm EX0 | EX1 FastPath Single 5

SHRD reg, reg, CL | imm microcode microcode NA

SHRD reg, reg, imm microcode microcode NA

SHRD  mem, reg, CL microcode microcode NA

SHRD  mem, reg, imm microcode microcode NA

SLWPCB reg microcode microcode NA

STC EX0 | EX1 FastPath Single 1

STD microcode microcode 1

STOS microcode microcode NA

STOSB microcode microcode NA

STOSW microcode microcode NA

STOSD microcode microcode NA

Table 10. General Purpose and Integer Instruction Latencies (Continued)
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STOSQ microcode microcode NA

SUB reg, reg EX0 | EX1 FastPath Single 1

SUB reg, imm EX0 | EX1 FastPath Single 1

SUB mem, reg EX0 | EX1 FastPath Single 5

SUB mem, imm EX0 | EX1 FastPath Single 5

SUB reg, mem EX0 | EX1 FastPath Single 5

T1MSKC reg, reg EX0 | EX1 FastPath Double 2

T1MSKC reg, mem EX0 | EX1 FastPath Double 6

TEST reg, reg EX0 | EX1 FastPath Single 1 If branch fused, op to EX1, 
else op to EX0 | EX1.

TEST reg, imm EX0 | EX1 FastPath Single 1 If branch fused, op to EX1, 
else op to EX0 | EX1.

TEST mem, reg EX0 | EX1 FastPath Single 5 If branch fused, op to EX1, 
else op to EX0 | EX1.

TEST mem, imm EX0 | EX1 FastPath Single 5 If branch fused, op to EX1, 
else op to EX0 | EX1.

TZCNT reg, reg EX0 | EX1 FastPath Double 2

TZCNT reg, mem16 EX0 | EX1 FastPath Double 6

TZCNT reg, mem32 EX0 | EX1 FastPath Double 6

TZCNT reg, mem64 EX0 | EX1 FastPath Double 6

TZMSK reg, reg EX0 | EX1 FastPath Double 2

TZMSK reg, mem EX0 | EX1 FastPath Double 6

XADD reg, reg EX0 | EX1 FastPath Single 1

32-bit/64-bit instructions of 
this form can also issue to 
AG0 or AG1 for Models 20h 
and greater

XADD mem, reg EX0 | EX1 FastPath Single 5

XCHG reg8, reg8 EX0 | EX1 FastPath Double 1

XCHG reg16, reg16 EX0 | EX1 FastPath Double 1

XCHG reg32, reg32 EX0 | EX1 FastPath Double 1
Instructions of this form can 
also issue to AG0 or AG1 
for Models 20h and greater

XCHG reg64, reg64
EX0 | EX1 FastPath Double 1

Instructions of this form can 
also issue to AG0 or AG1 
for Models 20h and greater

XCHG reg8, mem8 EX0 | EX1 FastPath Double 5

XCHG reg16, mem16 EX0 | EX1 FastPath Double 5

XCHG reg32, mem32 EX0 | EX1 FastPath Double 5
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XCHG reg64, mem64 EX0 | EX1 FastPath Double 5

XCHG mem8, reg8 EX0 | EX1 FastPath Double 5

XCHG mem16, reg16 EX0 | EX1 FastPath Double 5

XCHG mem32, reg32 EX0 | EX1 FastPath Double 5

XCHG mem64, reg64 EX0 | EX1 FastPath Double 5

XLAT microcode microcode NA

XLATB microcode microcode NA

XOR reg, reg EX0 | EX1 FastPath Single 1

XOR reg, imm EX0 | EX1 FastPath Single 1

XOR mem, reg EX0 | EX1 FastPath Single 5

XOR reg, imm EX0 | EX1 FastPath Single 5

XOR reg, mem EX0 | EX1 FastPath Single 5

XRSTOR mem microcode microcode NA

XSAVE mem microcode microcode NA
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B.3 System Instruction Latencies
The latency table for system instructions gives the decode type and latency corresponding to each 
instruction mnemonic. For more detailed information on the operation of a particular system 
instruction, as well as encoding information, see the AMD64 Architecture Programmer’s Manual 
Volume 3: General-Purpose and System Instructions, order# 24594 .

Table 11. System Instruction Latencies

Syntax Decode Type1 Latency

ARPL reg16, reg16 microcode NA

ARPL mem16, reg16 microcode NA

CLI microcode NA

CLTS microcode NA

INVLPG mem8 microcode NA

IRETQ microcode NA

LAR reg, reg microcode NA

LAR reg, mem microcode NA

LGDT mem32 microcode NA

LIDT mem32 microcode NA

LLDT reg32 microcode NA

LLDT mem32 microcode NA

LMSW reg microcode NA

LMSW mem microcode NA

LSL reg, reg16 microcode NA

LSL reg, reg32 microcode NA

LSL reg, reg64 microcode NA

LSL reg, mem16 microcode NA

LSL reg, mem32 microcode NA

LSL reg, mem64 microcode NA

MONITOR microcode Variable

MOV CR0, reg32 microcode NA

MOV CR0, reg64 microcode NA

MOV CR2, reg32 microcode NA

MOV CR4, reg32 microcode NA

MOV CR4, reg64 microcode NA

MOV CR8, reg32 microcode NA
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MOV DR0–3, reg32 microcode NA

MOV DR0, reg64 microcode NA

MOV DR6–7, reg32 microcode NA

MOV DR6, reg64 microcode NA

MOV reg32, CR0 microcode NA

MOV reg32, CR2 microcode NA

MOV reg32, CR3 microcode NA

MOV reg32, CR4 microcode NA

MOV reg32, CR8 microcode NA

MOV reg32, DR0–3 microcode NA

MOV reg32, DR6–7 microcode NA

MOV reg64, CR0 microcode NA

MOV reg64, CR3 microcode NA

MOV reg64, CR4 microcode NA

MOV reg64, DR0 microcode NA

MOV reg64, DR6 microcode NA

MWAIT microcode Variable

RDMSR APIC base microcode NA

RDMSR FS base microcode NA

RDMSR GS base microcode NA

RDMSR microcode Machine 
Dependent

RDPMC microcode NA

RDTSC microcode 43

RDTSCP microcode NA

SGDT mem microcode NA

SIDT mem microcode NA

SLDT reg microcode NA

SLDT mem microcode NA

SMSW reg microcode NA

SMSW mem microcode NA

STI microcode NA

STR reg microcode NA

STR mem microcode NA

Table 11. System Instruction Latencies (Continued)

Syntax Decode Type1 Latency
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SWAPGS microcode NA

VERR reg16 microcode NA

VERW reg16 microcode NA

VERR mem16 microcode NA

VERW mem16 microcode NA

WRMSR APIC base microcode NA

WRMSR FS base microcode NA

WRMSR GS base microcode NA

WRMSR microcode NA

XSETBV microcode NA

Table 11. System Instruction Latencies (Continued)

Syntax Decode Type1 Latency
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B.4 FPU Instruction Latencies
Tables below list FPU latencies for processor models 00h–0Fh and for processor models 10h-2Fh. 
Table 12 is specific to processor models 00h–0Fh and Table 13 is specific to processor models 10h-
2Fh. Each table entry provides instruction name, one or more pipes which may execute the 
instruction, decode type, and latency for every floating-point instruction that the respective processor 
model series supports. Instructions listed include both the x87 floating-point instructions and the 
SIMD instruction sets. For detailed information on the operation of these instructions, as well as 
opcodes, see the AMD64 Architecture Programmer’s Manual, Volume 4: 128-Bit and 256-bit Media 
Instructions, order# 26568, and AMD64 Architecture Programmer’s Manual Volume 5: 64-bit Media 
and x87 Floating-Point Instructions, order# 26569.

NOTE: Add 10 cycles to the latency indicated for instructions that load a floating-point operand from 
memory. Add 4 cycles for instructions that load an integer operand from memory. L1 cache miss adds 
additional latency.

Processor Models 00h–0Fh

Table 12: FPU Instruction Latencies

Instruction Pipes Decode Type Latencies

ADDPD_reg FMA[P0 | P1] FastPath Single 6

ADDPS_reg FMA[P0 | P1] FastPath Single 6

ADDSD_reg FMA[P0 | P1] FastPath Single 6

ADDSS_reg FMA[P0 | P1] FastPath Single 6

ADDSUBPD_reg FMA[P0 | P1] FastPath Single 6

ADDSUBPS_reg FMA[P0 | P1] FastPath Single 6

AESDEC_reg XBR[P1]/FMA[P0] FastPath Double 2/6

AESDECLAST_reg XBR[P1]/FMA[P0] FastPath Double 2/6

AESENC_reg XBR[P1]/FMA[P0] FastPath Double 2/6

AESENCLAST_reg XBR[P1]/FMA[P0] FastPath Double 2/6

AESIMC_reg FMA[P0] FastPath Single 6

AESKEYGENASSIST_reg FMA[P0] FastPath Single 6

ANDNPD_reg MAL[P2 | P3] FastPath Single 2

ANDNPS_reg MAL[P2 | P3] FastPath Single 2

ANDPD_reg MAL[P2 | P3] FastPath Single 2

ANDPS_reg MAL[P2 | P3] FastPath Single 2

BLENDPD_reg MAL[P2 | P3] FastPath Single 2

BLENDPS_reg MAL[P2 | P3] FastPath Single 2
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BLENDVPD_reg XBR[P1] FastPath Single 2

BLENDVPS_reg XBR[P1] FastPath Single 2

CMPPD_reg FMA[P0 | P1] FastPath Single 2

CMPPS_reg FMA[P0 | P1] FastPath Single 2

CMPSD_reg FMA[P0 | P1] FastPath Single 2

CMPSS_reg FMA[P0 | P1] FastPath Single 2

COMISD_reg FMA[P0 | P1]/STO[P3] FastPath Double 2/2

COMISS_reg FMA[P0 | P1]/STO[P3] FastPath Double 2/2

CRC32_reg16_reg16 microcode microcode 2

CRC32_reg32_reg32 microcode microcode 6

CRC32_reg8_reg8 microcode microcode 2

CVTDQ2PD_reg XBR[P1]/CVT[P0] FastPath Double 4/2

CVTDQ2PS_reg CVT[P0] FastPath Single 4

CVTPD2DQ_reg CVT[P0]/XBR[P1] FastPath Double 2/2

CVTPD2PI_reg CVT[P0]/XBR[P1] FastPath Double 4/2

CVTPD2PS_reg CVT[P0]/XBR[P1] FastPath Double 4/2

CVTPI2PD_reg XBR[P1]/CVT[P0] FastPath Double 2/4

CVTPI2PS_reg CVT[P0] FastPath Single 4

CVTPS2DQ_reg CVT[P0] FastPath Single 4

CVTPS2PD_reg XBR[P1]/CVT[P0] FastPath Double 2/4

CVTPS2PI_reg CVT[P0] FastPath Single 4

CVTSD2SI_reg32 CVT[P0]/STO[P3] FastPath Double 4/2

CVTSD2SI_reg64 CVT[P0]/STO[P3] FastPath Double 4/2

CVTSD2SS_reg CVT[P0] FastPath Single 4

CVTSI2SD_reg32 CVT[P0] FastPath Double 4

CVTSI2SD_reg64 CVT[P0] FastPath Double 4

CVTSI2SS_reg32 CVT[P0] FastPath Double 4

CVTSI2SS_reg64 CVT[P0] FastPath Double 4

CVTSS2SD_reg CVT[P0] FastPath Single 4

CVTSS2SI_reg32 CVT[P0]/STO[P3] FastPath Double 4/2

CVTSS2SI_reg64 CVT[P0]/STO[P3] FastPath Double 4/2

CVTTPD2DQ_reg CVT[P0]/XBR[P1] FastPath Double 4/2

CVTTPD2PI_reg CVT[P0]/XBR[P1] FastPath Double 4/2

CVTTPS2DQ_reg CVT[P0] FastPath Single 4

Table 12: FPU Instruction Latencies (Continued)

Instruction Pipes Decode Type Latencies
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CVTTPS2PI_reg CVT[P0] FastPath Single 4

CVTTSD2SI_reg32 CVT[P0]/STO[P3] FastPath Double 4/2

CVTTSD2SI_reg64 CVT[P0]/STO[P3] FastPath Double 4/2

CVTTSS2SI_reg32 CVT[P0]/STO[P3] FastPath Double 4/2

CVTTSS2SI_reg64 CVT[P0]/STO[P3] FastPath Double 4/2

DIVPD_reg FMA[P0 | P1] FastPath Single 27

DIVPS_reg FMA[P0 | P1] FastPath Single 24

DIVSD_reg FMA[P0 | P1] FastPath Single 27

DIVSS_reg FMA[P0 | P1] FastPath Single 24

DPPD_reg microcode microcode 15

DPPS_reg microcode microcode 25

EMMS microcode FastPath Single NA

EXTRACTPS_reg XBR[P1]/STO[P3] FastPath Double 2/2

EXTRQ_reg XBR[P1] FastPath Single 3

F2XM1_reg microcode microcode 189

FABS_reg FMA[P0 | P1] FastPath Single 2

FADD_reg FMA[P0 | P1] FastPath Single 6

FADDP_reg FMA[P0 | P1] FastPath Single 6

FCHS_reg FMA[P0 | P1] FastPath Single 2

FCLEX_reg microcode microcode NA

FCMOVB_reg microcode microcode NA

FCMOVBE_reg microcode microcode NA

FCMOVE_reg microcode microcode NA

FCMOVNB_reg microcode microcode NA

FCMOVNBE_reg microcode microcode NA

FCMOVNE_reg microcode microcode NA

FCMOVNU_reg microcode microcode NA

FCMOVU_reg microcode microcode NA

FCOM_reg FMA[P0 | P1] FastPath Single 2

FCOM2_reg FMA[P0 | P1] FastPath Single 2

FCOMI_reg FMA[P0 | P1]/STO[P3] FastPath Double 2/2

FCOMIP_reg FMA[P0 | P1]/STO[P3] FastPath Double 2/2

FCOMP_reg FMA[P0 | P1] FastPath Single 2

FCOMP3_reg FMA[P0 | P1] FastPath Single 2

Table 12: FPU Instruction Latencies (Continued)

Instruction Pipes Decode Type Latencies



260 Instruction Latencies Appendix B

47414 Rev. 3.06 January 2012Software Optimization Guide for AMD Family 15h Processors

FCOMP5_reg FMA[P0 | P1] FastPath Single 2

FCOMPP_reg FMA[P0 | P1] FastPath Single 2

FCOS_reg microcode microcode 151

FDECSTP_reg None FastPath Single 0

FDISI_reg microcode microcode NA

FDIV_reg FMA[P0 | P1] FastPath Single 42

FDIVP_reg FMA[P0 | P1] FastPath Single 42

FDIVR_reg FMA[P0 | P1] FastPath Single 42

FDIVRP_reg FMA[P0 | P1] FastPath Single 42

FENI_reg microcode microcode NA

FFREE_reg None FastPath Single 0

FFREEP_reg None FastPath Single 0

FINCSTP_reg None FastPath Single 0

FINIT_reg microcode microcode NA

FLD_reg FMA[P0 | P1] FastPath Single 2

FLD1_reg CVT[P0] FastPath Single 4

FLDL2E_reg CVT[P0] FastPath Single 4

FLDL2T_reg CVT[P0] FastPath Single 4

FLDLG2_reg CVT[P0] FastPath Single 4

FLDLN2_reg CVT[P0] FastPath Single 4

FLDPI_reg CVT[P0] FastPath Single 4

FLDZ_reg CVT[P0] FastPath Single 4

FMADDPD_reg FMA[P0 | P1] FastPath Single 6

FMADDPS_reg FMA[P0 | P1] FastPath Single 6

FMADDSD_reg FMA[P0 | P1] FastPath Single 6

FMADDSS_reg FMA[P0 | P1] FastPath Single 6

FMSUBPD_reg FMA[P0 | P1] FastPath Single 6

FMSUBPS_reg FMA[P0 | P1] FastPath Single 6

FMSUBSD_reg FMA[P0 | P1] FastPath Single 6

FMSUBSS_reg FMA[P0 | P1] FastPath Single 6

FMUL_reg FMA[P0 | P1] FastPath Single 6

FMULP_reg FMA[P0 | P1] FastPath Single 6

FNCLEX_reg microcode microcode NA

FNINIT_reg microcode microcode NA

Table 12: FPU Instruction Latencies (Continued)

Instruction Pipes Decode Type Latencies



Appendix B Instruction Latencies 261

Software Optimization Guide for AMD Family 15h Processors47414 Rev. 3.06 January 2012

FNMADDPD_reg FMA[P0 | P1] FastPath Single 6

FNMADDPS_reg FMA[P0 | P1] FastPath Single 6

FNMADDSD_reg FMA[P0 | P1] FastPath Single 6

FNMADDSS_reg FMA[P0 | P1] FastPath Single 6

FNMSUBPD_reg FMA[P0 | P1] FastPath Single 6

FNMSUBPS_reg FMA[P0 | P1] FastPath Single 6

FNMSUBSD_reg FMA[P0 | P1] FastPath Single 6

FNMSUBSS_reg FMA[P0 | P1] FastPath Single 6

FNOP_reg None FastPath Single 0

FNSTSW_reg microcode microcode NA

FPATAN_reg microcode microcode 433

FPREM_reg FMA[P0] FastPath Single 10

FPREM1_reg FMA[P0] FastPath Single 10

FPTAN_reg microcode FastPath Single 240

FRNDINT_reg CVT[P0] FastPath Single 4

FSCALE_reg microcode microcode NA

FSETPM_reg microcode microcode NA

FSIN_reg microcode microcode 148

FSINCOS_reg microcode microcode 143

FSQRT_reg FMA[P0 | P1] FastPath Single 52

FST_reg FMA[P0 | P1] FastPath Single 2

FSTP_reg FMA[P0 | P1] FastPath Single 2

FSTP1_reg FMA[P0 | P1] FastPath Single 2

FSTP8_reg FMA[P0 | P1] FastPath Single 2

FSTP9_reg FMA[P0 | P1] FastPath Single 2

FSTSW_reg microcode microcode NA

FSUB_reg FMA[P0 | P1] FastPath Single 6

FSUBP_reg FMA[P0 | P1] FastPath Single 10

FSUBR_reg FMA[P0 | P1] FastPath Single 6

FSUBRP_reg FMA[P0 | P1] FastPath Single 5

FTST_reg FMA[P0 | P1] FastPath Single 2

FUCOM_reg FMA[P0 | P1] FastPath Single 2

FUCOMI_reg FMA[P0 | P1]/STO[P3] FastPath Double 2/2

FUCOMIP_reg FMA[P0 | P1]/STO[P3] FastPath Double 2/2

Table 12: FPU Instruction Latencies (Continued)

Instruction Pipes Decode Type Latencies
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FUCOMP_reg FMA[P0 | P1] FastPath Single 2

FUCOMPP_reg FMA[P0 | P1] FastPath Single 2

FWAIT(WAIT)_reg None FastPath Single 0

FXAM_reg FMA[P0 | P1] FastPath Single 2

FXCH_reg FMA[P0 | P1] FastPath Single 2

FXCH4_reg FMA[P0 | P1] FastPath Single 2

FXCH7_reg FMA[P0 | P1] FastPath Single 2

FXTRACT_reg microcode microcode NA

FYL2X_reg microcode microcode NA

FYL2XP1_reg microcode microcode 241

HADDPD_reg microcode microcode 11

HADDPS_reg microcode microcode 11

HSUBPD_reg microcode microcode 11

HSUBPS_reg microcode microcode 11

INSERTPS_reg XBR[P1] FastPath Single 2

INSERTQ_reg XBR[P1] FastPath Single 3

MASKMOVDQU_reg microcode microcode NA

MASKMOVQ_mmx_reg microcode microcode NA

MAXPD_reg FMA[P0 | P1] FastPath Single 2

MAXPS_reg FMA[P0 | P1] FastPath Single 2

MAXSD_reg FMA[P0 | P1] FastPath Single 2

MAXSS_reg FMA[P0 | P1] FastPath Single 2

MFENCE_reg microcode microcode NA

MINPD_reg FMA[P0 | P1] FastPath Single 2

MINPS_reg FMA[P0 | P1] FastPath Single 2

MINSD_reg FMA[P0 | P1] FastPath Single 2

MINSS_reg FMA[P0 | P1] FastPath Single 2

MOVAPD_reg MAL[P2 | P3] FastPath Single 0

MOVAPS_reg MAL[P2 | P3] FastPath Single 0

MOVD_mem32_reg32 None FastPath Single 4

MOVD_mem64_reg64 None FastPath Single 4

MOVD_mmx_mem32 None FastPath Single 4

MOVD_mmx_mem64 STO[P3] FastPath Single 4

MOVD_reg32_xmm STO[P3] FastPath Single 2

Table 12: FPU Instruction Latencies (Continued)

Instruction Pipes Decode Type Latencies
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MOVD_reg64_xmm STO[P3] FastPath Single 2

MOVD_xmm_reg32 None FastPath Double 8

MOVD_xmm_reg64 None FastPath Double 8

MOVDDUP_reg XBR[P1] FastPath Single 2

MOVDQ2Q_reg MAL[P2 | P3] FastPath Single 2

MOVDQA_reg MAL[P2 | P3] FastPath Single 2

MOVDQU_reg MAL[P2 | P3] FastPath Single 2

MOVHLPS_reg XBR[P1] FastPath Single 2

MOVHPD_mem_xmm XBR[P1] FastPath Double 4

MOVHPS_mem_xmm XBR[P1] FastPath Double 4

MOVLHPS_reg XBR[P1] FastPath Single 2

MOVMSKPD_reg XBR[P1]/STO[P3] FastPath Double 2/2

MOVMSKPS_reg XBR[P1]/STO[P3] FastPath Double 2/2

MOVNTDQ_mem STO[P3] FastPath Single 4

MOVNTDQA_mem STO[P3] FastPath Single 4

MOVNTPD_mem STO[P3] FastPath Single 4

MOVNTPS_mem STO[P3] FastPath Single 4

MOVNTQ_mmx_mem STO[P3] FastPath Single 4

MOVNTSD_mem STO[P3] FastPath Single 4

MOVNTSS_mem STO[P3] FastPath Single 4

MOVQ_mmx_reg MAL[P2 | P3] FastPath Single 2

MOVQ_reg MAL[P2 | P3] FastPath Single 2

MOVQ2DQ_reg MAL[P2 | P3] FastPath Single 2

MOVSD_reg FMA[P0 | P1] FastPath Single 2

MOVSHDUP_reg XBR[P1] FastPath Single 2

MOVSLDUP_reg XBR[P1] FastPath Single 2

MOVSS_reg FMA[P0 | P1] FastPath Single 2

MOVUPD_reg MAL[P2 | P3] FastPath Single 0

MOVUPS_reg MAL[P2 | P3] FastPath Single 0

MPSADBW_reg microcode microcode 8

MULPD_reg FMA[P0 | P1] FastPath Single 6

MULPS_reg FMA[P0 | P1] FastPath Single 6

MULSD_reg FMA[P0 | P1] FastPath Single 6

MULSS_reg FMA[P0 | P1] FastPath Single 6

Table 12: FPU Instruction Latencies (Continued)
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ORPD_reg MAL[P2 | P3] FastPath Single 2

ORPS_reg MAL[P2 | P3] FastPath Single 2

PABSB_mmx_reg MAL[P2 | P3] FastPath Single 2

PABSB_reg MAL[P2 | P3] FastPath Single 2

PABSD_mmx_reg MAL[P2 | P3] FastPath Single 2

PABSD_reg MAL[P2 | P3] FastPath Single 2

PABSW_mmx_reg MAL[P2 | P3] FastPath Single 2

PABSW_reg MAL[P2 | P3] FastPath Single 2

PACKSSDW_mmx_reg XBR[P1] FastPath Single 2

PACKSSDW_reg XBR[P1] FastPath Single 2

PACKSSWB_mmx_reg XBR[P1] FastPath Single 2

PACKSSWB_reg XBR[P1] FastPath Single 2

PACKUSDW_reg XBR[P1] FastPath Single 2

PACKUSWB_mmx_reg XBR[P1] FastPath Single 2

PACKUSWB_reg XBR[P1] FastPath Single 2

PADDB_mmx_reg MAL[P2 | P3] FastPath Single 2

PADDB_reg MAL[P2 | P3] FastPath Single 2

PADDD_mmx_reg MAL[P2 | P3] FastPath Single 2

PADDD_reg MAL[P2 | P3] FastPath Single 2

PADDQ_mmx_reg MAL[P2 | P3] FastPath Single 2

PADDQ_reg MAL[P2 | P3] FastPath Single 2

PADDSB_mmx_reg MAL[P2 | P3] FastPath Single 2

PADDSB_reg MAL[P2 | P3] FastPath Single 2

PADDSW_mmx_reg MAL[P2 | P3] FastPath Single 2

PADDSW_reg MAL[P2 | P3] FastPath Single 2

PADDUSB_mmx_reg MAL[P2 | P3] FastPath Single 2

PADDUSB_reg MAL[P2 | P3] FastPath Single 2

PADDUSW_mmx_reg MAL[P2 | P3] FastPath Single 2

PADDUSW_reg MAL[P2 | P3] FastPath Single 2

PADDW_mmx_reg MAL[P2 | P3] FastPath Single 2

PADDW_reg MAL[P2 | P3] FastPath Single 2

PALIGNR_mmx_reg XBR[P1] FastPath Single 2

PALIGNR_reg XBR[P1] FastPath Single 2

PAND_mmx_reg MAL[P2 | P3] FastPath Single 2

Table 12: FPU Instruction Latencies (Continued)
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PAND_reg MAL[P2 | P3] FastPath Single 2

PANDN_mmx_reg MAL[P2 | P3] FastPath Single 2

PANDN_reg MAL[P2 | P3] FastPath Single 2

PAVGB_mmx_reg MAL[P2 | P3] FastPath Single 2

PAVGB_reg MAL[P2 | P3] FastPath Single 2

PAVGW_mmx_reg MAL[P2 | P3] FastPath Single 2

PAVGW_reg MAL[P2 | P3] FastPath Single 2

PBLENDVB_reg XBR[P1] FastPath Single 2

PBLENDW_reg MAL[P2 | P3] FastPath Single 2

PCLMULQDQ_reg microcode microcode 12

PCMPEQB_mmx_reg MAL[P2 | P3] FastPath Single 2

PCMPEQB_reg MAL[P2 | P3] FastPath Single 2

PCMPEQD_mmx_reg MAL[P2 | P3] FastPath Single 2

PCMPEQD_reg MAL[P2 | P3] FastPath Single 2

PCMPEQQ_reg MAL[P2 | P3] FastPath Single 2

PCMPEQW_mmx_reg MAL[P2 | P3] FastPath Single 2

PCMPEQW_reg MAL[P2 | P3] FastPath Single 2

PCMPESTRI_reg microcode microcode 30

PCMPESTRM_reg microcode microcode NA

PCMPGTB_mmx_reg MAL[P2 | P3] FastPath Single 2

PCMPGTB_reg MAL[P2 | P3] FastPath Single 2

PCMPGTD_mmx_reg MAL[P2 | P3] FastPath Single 2

PCMPGTD_reg MAL[P2 | P3] FastPath Single 2

PCMPGTQ_reg MAL[P2 | P3] FastPath Single 2

PCMPGTW_mmx_reg MAL[P2 | P3] FastPath Single 2

PCMPGTW_reg MAL[P2 | P3] FastPath Single 2

PCMPISTRI_mr microcode microcode 10

PCMPISTRM_mr microcode microcode NA

PEXTRB_reg XBR[P1]/STO[P3] FastPath Double 2/2

PEXTRD_mem32_xmm XBR[P1]/STO[P3] FastPath Double 6/2

PEXTRD_reg32_xmm XBR[P1]/STO[P3] FastPath Dboule 2/2

PEXTRQ_mem64_xmm XBR[P1]/STO[P3] FastPath Double 6/2

PEXTRQ_reg64_xmm XBR[P1]/STO[P3] FastPath Double 2/2

PEXTRW_mmx_reg XBR[P1]/STO[P3] FastPath Double 2/2

Table 12: FPU Instruction Latencies (Continued)
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PEXTRW_reg XBR[P1]/STO[P3] FastPath Double 2/2

PHADDD_mmx_reg microcode microcode 5

PHADDD_reg microcode microcode 5

PHADDSW_mmx_reg microcode microcode 5

PHADDSW_reg microcode microcode 5

PHADDW_mmx_reg microcode microcode NA

PHADDW_reg microcode microcode 5

PHMINPOSUW_reg MAL[P2 | P3] | XBR[P1] FastPath Single 2/2

PHSUBD_mmx_reg microcode microcode 5

PHSUBD_reg microcode microcode 5

PHSUBSW_mmx_reg microcode microcode 5

PHSUBSW_reg microcode microcode 5

PHSUBW_mmx_reg microcode microcode 5

PHSUBW_reg microcode microcode 5

PINSRB_reg XBR[P1] FastPath Single 2

PINSRD_OP32_reg XBR[P1] FastPath Single 2

PINSRQ_OP64_reg XBR[P1] FastPath Single 2

PINSRW_mmx_reg XBR[P1] FastPath Single 2

PINSRW_reg XBR[P1] FastPath Double 2

PMADDUBSW_mmx_reg MMA[P0] FastPath Single 4

PMADDUBSW_reg MMA[P0] FastPath Single 4

PMADDWD_mmx_reg MMA[P0] FastPath Single 4

PMADDWD_reg MMA[P0] FastPath Single 4

PMAXSB_reg MAL[P2 | P3] FastPath Single 2

PMAXSD_reg MAL[P2 | P3] FastPath Single 2

PMAXSW_mmx_reg MAL[P2 | P3] FastPath Single 2

PMAXSW_reg MAL[P2 | P3] FastPath Single 2

PMAXUB_mmx__reg MAL[P2 | P3] FastPath Single 2

PMAXUB_reg MAL[P2 | P3] FastPath Single 2

PMAXUD_reg MAL[P2 | P3] FastPath Single 2

PMAXUW_reg MAL[P2 | P3] FastPath Single 2

PMINSB_reg MAL[P2 | P3] FastPath Single 2

PMINSD_reg MAL[P2 | P3] FastPath Single 2

PMINSW_mmx_reg MAL[P2 | P3] FastPath Single 2
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PMINSW_reg MAL[P2 | P3] FastPath Single 2

PMINUB_mmx_reg MAL[P2 | P3] FastPath Single 2

PMINUB_reg MAL[P2 | P3] FastPath Single 2

PMINUD_reg MAL[P2 | P3] FastPath Single 2

PMINUW_reg MAL[P2 | P3] FastPath Single 2

PMOVMSKB_mmx_reg XBR[P1]/STO[P3] FastPath Double 2/2

PMOVMSKB_reg XBR[P1]/STO[P3] FastPath Double 2/2

PMOVSXBD_reg XBR[P1] FastPath Single 2

PMOVSXBQ_reg XBR[P1] FastPath Single 2

PMOVSXBW_reg XBR[P1] FastPath Single 2

PMOVSXDQ_reg XBR[P1] FastPath Single 2

PMOVSXWD_reg XBR[P1] FastPath Single 2

PMOVSXWQ_reg XBR[P1] FastPath Single 2

PMOVZXBD_reg XBR[P1] FastPath Single 2

PMOVZXBQ_reg XBR[P1] FastPath Single 2

PMOVZXBW_reg XBR[P1] FastPath Single 2

PMOVZXDQ_reg XBR[P1] FastPath Single 2

PMOVZXWD_reg XBR[P1] FastPath Single 2

PMOVZXWQ_reg XBR[P1] FastPath Single 2

PMULDQ_reg MMA[P0] FastPath Single 4

PMULHRSW_mmx_reg MMA[P0] FastPath Single 4

PMULHRSW_reg MMA[P0] FastPath Single 4

PMULHUW_mmx_reg MMA[P0] FastPath Single 4

PMULHUW_reg MMA[P0] FastPath Single 4

PMULHW_mmx_reg MMA[P0] FastPath Single 4

PMULHW_reg MMA[P0] FastPath Single 4

PMULLD_reg MMA[P0] FastPath Single 5

PMULLW_mmx_reg MMA[P0] FastPath Single 4

PMULLW_reg MMA[P0] FastPath Single 4

PMULUDQ_mmx_reg MMA[P0] FastPath Single 4

PMULUDQ_reg MMA[P0] FastPath Single 4

POR_reg MAL[P2 | P3] FastPath Single 2

POR<mmx>_reg MAL[P2 | P3] FastPath Single 2

PSADBW_mmx_reg MAL[P2 | P3] FastPath Double 2
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PSADBW_reg MAL[P2 | P3] FastPath Double 2

PSHUFB_mmx_reg XBR[P1] FastPath Single 3

PSHUFB_reg XBR[P1] FastPath Single 3

PSHUFD_reg XBR[P1] FastPath Single 2

PSHUFHW_reg XBR[P1] FastPath Single 2

PSHUFLW_reg XBR[P1] FastPath Single 2

PSHUFW_mmx_reg XBR[P1] FastPath Single 2

PSIGNB_mmx_reg MAL[P2 | P3] FastPath Single 2

PSIGNB_reg MAL[P2 | P3] FastPath Single 2

PSIGND_mmx_reg MAL[P2 | P3] FastPath Single 2

PSIGND_reg MAL[P2 | P3] FastPath Single 2

PSIGNW_mmx_reg MAL[P2 | P3] FastPath Single 2

PSIGNW_reg MAL[P2 | P3] FastPath Single 2

PSLLD_mmx_reg XBR[P1] FastPath Single 3

PSLLD_reg XBR[P1] FastPath Single 3

PSLLDQ_reg XBR[P1] FastPath Single 2

PSLLQ_mmx_reg XBR[P1] FastPath Single 3

PSLLQ_reg XBR[P1] FastPath Single 3

PSLLW_mmx_reg XBR[P1] FastPath Single 3

PSLLW_reg XBR[P1] FastPath Single 3

PSRAD_mmx_reg XBR[P1] FastPath Single 3

PSRAD_reg XBR[P1] FastPath Single 3

PSRAW_mmx_reg XBR[P1] FastPath Single 3

PSRAW_reg XBR[P1] FastPath Single 3

PSRLD_mmx_reg XBR[P1] FastPath Single 3

PSRLD_reg XBR[P1] FastPath Single 3

PSRLDQ_reg XBR[P1] FastPath Single 2

PSRLQ_mmx_reg XBR[P1] FastPath Single 3

PSRLQ_reg XBR[P1] FastPath Single 3

PSRLW_mmx_reg XBR[P1] FastPath Single 3

PSRLW_reg XBR[P1] FastPath Single 3

PSUBB_mmx_reg MAL[P2 | P3] FastPath Single 2

PSUBB_reg MAL[P2 | P3] FastPath Single 2

PSUBD_mmx_reg MAL[P2 | P3] FastPath Single 2
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PSUBD_reg MAL[P2 | P3] FastPath Single 2

PSUBQ_mmx_reg MAL[P2 | P3] FastPath Single 2

PSUBQ_reg MAL[P2 | P3] FastPath Single 2

PSUBSB_mmx_reg MAL[P2 | P3] FastPath Single 2

PSUBSB_reg MAL[P2 | P3] FastPath Single 2

PSUBSW_mmx_reg MAL[P2 | P3] FastPath Single 2

PSUBSW_reg MAL[P2 | P3] FastPath Single 2

PSUBUSB_mmx_reg MAL[P2 | P3] FastPath Single 2

PSUBUSB_reg MAL[P2 | P3] FastPath Single 2

PSUBUSW_mmx_reg MAL[P2 | P3] FastPath Single 2

PSUBUSW_reg MAL[P2 | P3] FastPath Single 2

PSUBW_mmx_reg MAL[P2 | P3] FastPath Single 2

PSUBW_reg MAL[P2 | P3] FastPath Single 2

PTEST_reg XBR[P1]/STO[P3] FastPath Double 2/2

PUNPCKHBW_mmx_reg XBR[P1] FastPath Single 2

PUNPCKHBW_reg XBR[P1] FastPath Single 2

PUNPCKHDQ_mmx_reg XBR[P1] FastPath Single 2

PUNPCKHDQ_reg XBR[P1] FastPath Single 2

PUNPCKHQDQ_reg XBR[P1] FastPath Single 2

PUNPCKHWD_mmx_reg XBR[P1] FastPath Single 2

PUNPCKHWD_reg XBR[P1] FastPath Single 2

PUNPCKLBW_mmx_reg XBR[P1] FastPath Single 2

PUNPCKLBW_reg XBR[P1] FastPath Single 2

PUNPCKLDQ_mmx_reg XBR[P1] FastPath Single 2

PUNPCKLDQ_reg XBR[P1] FastPath Single 2

PUNPCKLQDQ_reg XBR[P1] FastPath Single 2

PUNPCKLWD_mmx_reg XBR[P1] FastPath Single 2

PUNPCKLWD_reg XBR[P1] FastPath Single 2

PXOR_mmx_reg MAL[P2 | P3] FastPath Single 2

PXOR_reg MAL[P2 | P3] FastPath Single 2

RCPPS_reg FMA[P0 | P1] FastPath Single 6

RCPSS_reg FMA[P0 | P1] FastPath Single 6

ROUNDPD_reg CVT[P0] FastPath Single 4

ROUNDPS_reg CVT[P0] FastPath Single 4
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ROUNDSD_reg CVT[P0] FastPath Single 4

ROUNDSS_reg CVT[P0] FastPath Single 4

RSQRTPS_reg FMA[P0 | P1] FastPath Single 6

RSQRTSS_reg FMA[P0 | P1] FastPath Single 6

SHUFPD_reg XBR[P1] FastPath Single 2

SHUFPS_reg XBR[P1] FastPath Single 2

SQRTPD_reg FMA[P0 | P1] FastPath Single 38

SQRTPS_reg FMA[P0 | P1] FastPath Single 29

SQRTSD_reg FMA[P0 | P1] FastPath Single 38

SQRTSS_reg FMA[P0 | P1] FastPath Single 29

SUBPD_reg FMA[P0 | P1] FastPath Single 6

SUBPS_reg FMA[P0 | P1] FastPath Single 6

SUBSD_reg FMA[P0 | P1] FastPath Single 6

SUBSS_reg FMA[P0 | P1] FastPath Single 6

UCOMISD_reg FMA[P0 | P1]/STO[P3] FastPath Double 2/2

UCOMISS_reg FMA[P0 | P1]/STO[P3] FastPath Double 2/2

UNPCKHPD_reg XBR[P1] FastPath Single 2

UNPCKHPS_reg XBR[P1] FastPath Single 2

UNPCKLPD_reg XBR[P1] FastPath Single 2

UNPCKLPS_reg XBR[P1] FastPath Single 2

VADDPD_128_reg FMA[P0 | P1] FastPath Single 6

VADDPD_256_reg FMA[P0 | P1] FastPath Double 6

VADDPS_128_reg FMA[P0 | P1] FastPath Single 6

VADDPS_256_reg FMA[P0 | P1] FastPath Double 6

VADDSD_128_reg FMA[P0 | P1] FastPath Single 6

VADDSS_128_reg FMA[P0 | P1] FastPath Single 6

VADDSUBPD_128_reg FMA[P0 | P1] FastPath Single 6

VADDSUBPD_256_reg FMA[P0 | P1] FastPath Double 6

VADDSUBPS_128_reg FMA[P0 | P1] FastPath Single 6

VADDSUBPS_256_reg FMA[P0 | P1] FastPath Double 6

VAESDEC_128_reg XBR[P1]/FMA[P0] FastPath Double 2/6

VAESDECLAST_128_reg XBR[P1]/FMA[P0] FastPath Double 2/6

VAESENC_128_reg XBR[P1]/FMA[P0] FastPath Double 2/6

VAESENCLAST_128_reg XBR[P1]/FMA[P0] FastPath Double 2/6
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VAESIMC_128_reg FMA[P0] FastPath Single 6

VAESKEYGENASSIST_128_reg FMA[P0] FastPath Single 6

VANDNPD_128_reg MAL[P2 | P3] FastPath Single 2

VANDNPD_256_reg MAL[P2 | P3] FastPath Double 2

VANDNPS_128_reg MAL[P2 | P3] FastPath Single 2

VANDNPS_256_reg MAL[P2 | P3] FastPath Double 2

VANDPD_128_reg MAL[P2 | P3] FastPath Single 2

VANDPD_256_reg MAL[P2 | P3] FastPath Double 2

VANDPS_128_reg MAL[P2 | P3] FastPath Single 2

VANDPS_256_reg MAL[P2 | P3] FastPath Double 2

VBLENDPD_128_reg MAL[P2 | P3] FastPath Single 2

VBLENDPD_256_reg MAL[P2 | P3] FastPath Double 2

VBLENDPS_128_reg MAL[P2 | P3] FastPath Single 2

VBLENDPS_256_reg MAL[P2 | P3] FastPath Double 2

VBLENDVPD_128_reg XBR[P1] FastPath Single 2

VBLENDVPD_256_reg XBR[P1] FastPath Double 3

VBLENDVPS_128_reg XBR[P1] FastPath Single 2

VBLENDVPS_256_reg XBR[P1] FastPath Double 3

VCMPPD_128_reg FMA[P0 | P1] FastPath Single 2

VCMPPD_256_reg FMA[P0 | P1] FastPath Double 2

VCMPPS_128_reg FMA[P0 | P1] FastPath Single 2

VCMPPS_256_reg FMA[P0 | P1] FastPath Double 2

VCMPSD_128_reg FMA[P0 | P1] FastPath Single 2

VCMPSS_128_reg FMA[P0 | P1] FastPath Single 2

VCOMISD_128_reg FMA[P0 | P1]/STO[P3] FastPath Double 2/2

VCOMISS_128_reg FMA[P0 | P1]/STO[P3] FastPath Double 2/2

VCVTDQ2PD_128_reg XBR[P1]/CVT[P0] FastPath Double 2/4

VCVTDQ2PD_256_reg microcode microcode 7

VCVTDQ2PS_128_reg CVT[P0] FastPath Single 4

VCVTDQ2PS_256_reg microcode microcode 3

VCVTPD2DQ_128_reg CVT[P0]/XBR[P1] FastPath Double 4/2

VCVTPD2DQ_256_reg microcode microcode 8

VCVTPD2PS_128_reg CVT[P0]/XBR[P1] FastPath Double 4/2

VCVTPD2PS_256_reg microcode microcode 7
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VCVTPS2DQ_128_reg CVT[P0] FastPath Single 4

VCVTPS2DQ_256_reg microcode microcode 5

VCVTPS2PD_128_reg XBR[P1]/CVT[P0] FastPath Double 2/4

VCVTPS2PD_256_reg microcode microcode 7

VCVTSD2SI_128_OP32_reg CVT[P0]/STO[P3] FastPath Double 4/2

VCVTSD2SI_128_OP64_reg CVT[P0]/STO[P3] FastPath Double 4/2

VCVTSD2SS_128_reg CVT[P0] FastPath Single 4

VCVTSI2SD_128_OP32_reg CVT[P0] FastPath Double 4

VCVTSI2SD_128_OP64_reg CVT[P0] FastPath Double 4

VCVTSI2SS_128_OP32_reg CVT[P0] FastPath Double 4

VCVTSI2SS_128_OP64_reg CVT[P0] FastPath Double 4

VCVTSS2SD_128_reg CVT[P0] FastPath Single 4

VCVTSS2SI_128_reg32_xmm CVT[P0]/STO[P3] FastPath Double 4/2

VCVTSS2SI_128_reg64_xmm CVT[P0]/STO[P3] FastPath Double 4/2

VCVTTPD2DQ_128_reg CVT[P0]/XBR[P1] FastPath Double 4/2

VCVTTPD2DQ_256_reg microcode microcode 9

VCVTTPS2DQ_128_reg CVT[P0] FastPath Single 4

VCVTTPS2DQ_256_reg microcode microcode 5

VCVTTSD2SI_128_reg32_xmm CVT[P0]/STO[P3] FastPath Double 4/2

VCVTTSD2SI_128_reg64_xmm CVT[P0]/STO[P3] FastPath Double 4/2

VCVTTSS2SI_128_reg32_xmm CVT[P0]/STO[P3] FastPath Double 4/2

VCVTTSS2SI_128_reg64_xmm CVT[P0]/STO[P3] FastPath Double 4/2

VDIVPD_128_reg FMA[P0 | P1] FastPath Single 27

VDIVPD_256_reg FMA[P0 | P1] FastPath Double 27

VDIVPS_128_reg FMA[P0 | P1] FastPath Single 24

VDIVPS_256_reg FMA[P0 | P1] FastPath Double 24

VDIVSD_128_reg FMA[P0 | P1] FastPath Single 27

VDIVSS_128_reg FMA[P0 | P1] FastPath Single 24

VDPPD_128_reg microcode microcode 15

VDPPS_128_reg microcode microcode 25

VDPPS_256_reg microcode microcode 25

VEXTRACTF128_256_reg MAL[P2 | P3] FastPath Single 2

VEXTRACTPS_128_reg XBR[P1]/STO[P3] FastPath Double 2/2

VFMADDPD_256_reg FMA[P0 | P1] FastPath Double 6
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VFMADDPS_128_reg FMA[P0 | P1] FastPath Single 6

VFMADDPS_256_reg FMA[P0 | P1] FastPath Double 6

VFMADDSD_128_reg FMA[P0 | P1] FastPath Single 6

VFMADDSS_128_reg FMA[P0 | P1] FastPath Single 6

VFMADDSUBPD_128_reg FMA[P0 | P1] FastPath Single 6

VFMADDSUBPD_256_reg FMA[P0 | P1] FastPath Double 6

VFMADDSUBPS_128_reg FMA[P0 | P1] FastPath Single 6

VFMADDSUBPS_256_reg FMA[P0 | P1] FastPath Double 6

VFMSUBADDPD_128_reg FMA[P0 | P1] FastPath Single 6

VFMSUBADDPD_256_reg FMA[P0 | P1] FastPath Double 6

VFMSUBADDPS_128_reg FMA[P0 | P1] FastPath Single 6

VFMSUBADDPS_256_reg FMA[P0 | P1] FastPath Double 6

VFMSUBPD_128_reg FMA[P0 | P1] FastPath Single 6

VFMSUBPD_256_reg FMA[P0 | P1] FastPath Double 6

VFMSUBPS_128_reg FMA[P0 | P1] FastPath Single 6

VFMSUBPS_256_reg FMA[P0 | P1] FastPath Double 6

VFMSUBSD_128_reg FMA[P0 | P1] FastPath Single 6

VFMSUBSS_128_reg FMA[P0 | P1] FastPath Single 6

VFNMADDPD_128_reg FMA[P0 | P1] FastPath Single 6

VFNMADDPD_256_reg FMA[P0 | P1] FastPath Double 6

VFNMADDPS_128_reg FMA[P0 | P1] FastPath Single 6

VFNMADDPS_256_reg FMA[P0 | P1] FastPath Double 6

VFNMADDSD_128_reg FMA[P0 | P1] FastPath Single 6

VFNMADDSS_128_reg FMA[P0 | P1] FastPath Single 6

VFNMSUBPD_128_reg FMA[P0 | P1] FastPath Single 6

VFNMSUBPD_256_reg FMA[P0 | P1] FastPath Double 6

VFNMSUBPS_128_reg FMA[P0 | P1] FastPath Single 6

VFNMSUBPS_256_reg FMA[P0 | P1] FastPath Double 6

VFNMSUBSD_128_reg FMA[P0 | P1] FastPath Single 6

VFNMSUBSS_128_reg FMA[P0 | P1] FastPath Single 6

VFRCZPD_128_reg CVT[P0]/FMA[P0 | P1] FastPath Double 4/6

VFRCZPD_256_reg microcode microcode NA

VFRCZPS_128_reg CVT[P0]/FMA[P0 | P1] FastPath Double 4/6

VFRCZPS_256_reg microcode microcode NA
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VFRCZSD_128_reg CVT[P0]/FMA[P0 | P1] FastPath Double 4/6

VFRCZSS_128_reg CVT[P0]/FMA[P0 | P1] FastPath Double 4/6

VHADDPD_128_reg microcode microcode 11

VHADDPD_256_reg microcode microcode 11

VHADDPS_128_reg microcode microcode 11

VHADDPS_256_reg microcode microcode 11

VHSUBPD_128_reg microcode microcode 11

VHSUBPD_256_reg microcode microcode 11

VHSUBPS_128_reg microcode microcode 11

VHSUBPS_256_reg microcode microcode 11

VINSERTF128_256_reg MAL[P2 | P3] FastPath Double 3

VINSERTPS_128_reg XBR[P1] FastPath Single 2

VMASKMOVDQU_128_reg microcode microcode NA

VMAXPD_128_reg FMA[P0 | P1] FastPath Single 2

VMAXPD_256_reg FMA[P0 | P1] FastPath Double 2

VMAXPS_128_reg FMA[P0 | P1] FastPath Single 2

VMAXPS_256_reg FMA[P0 | P1] FastPath Double 2

VMAXSD_128_reg FMA[P0 | P1] FastPath Single 2

VMAXSS_128_reg FMA[P0 | P1] FastPath Single 2

VMINPD_128_reg FMA[P0 | P1] FastPath Single 2

VMINPD_256_reg FMA[P0 | P1] FastPath Double 2

VMINPS_128_reg FMA[P0 | P1] FastPath Single 2

VMINPS_256_reg FMA[P0 | P1] FastPath Double 2

VMINSD_128_reg FMA[P0 | P1] FastPath Single 2

VMINSS_128_reg FMA[P0 | P1] FastPath Single 2

VMOVAPD_128_reg MAL[P2 | P3] FastPath Single 2

VMOVAPD_256_reg MAL[P2 | P3] FastPath Double 2

VMOVAPS_128_reg MAL[P2 | P3] FastPath Single 2

VMOVAPS_256_reg MAL[P2 | P3] FastPath Double 2

VMOVD_128_reg32_xmm STO[P3] FastPath Single 2

VMOVD_128_xmm_reg32 None FastPath Double 8

VMOVDDUP_128_reg XBR[P1] FastPath Single 2

VMOVDDUP_256_reg XBR[P1] FastPath Double 3

VMOVDQA_128_reg MAL[P2 | P3] FastPath Single 2
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VMOVDQA_256_reg MAL[P2 | P3] FastPath Double 2

VMOVDQU_128_reg MAL[P2 | P3] FastPath Single 2

VMOVDQU_256_reg MAL[P2 | P3] FastPath Double 2

VMOVHLPS_128_reg XBR[P1] FastPath Single 2

VMOVHPD_128_mem_reg XBR[P1] FastPath Double 4

VMOVHPS_128_mem_reg XBR[P1] FastPath Double 4

VMOVLHPS_128_reg XBR[P1] FastPath Single 2

VMOVMSKPD_128_reg XBR[P1]/STO[P3] FastPath Double 2/4

VMOVMSKPD_256_reg XBR[P1]/STO[P3] FastPath Double 2/4

VMOVMSKPS_128_reg XBR[P1]/STO[P3] FastPath Double 2/4

VMOVMSKPS_256_reg XBR[P1]/STO[P3] FastPath Double 2/4

VMOVQ_128_reg64_xmm MAL[P2 | P3] FastPath Single 2

VMOVQ_128_xmm_reg64 MAL[P2 | P3] FastPath Single 2

VMOVSD_128_reg FMA[P0 | P1] FastPath Single 2

VMOVSHDUP_128_reg XBR[P1] FastPath Single 2

VMOVSHDUP_256_reg XBR[P1] FastPath Double 3

VMOVSLDUP_128_reg XBR[P1] FastPath Single 2

VMOVSLDUP_256_reg XBR[P1] FastPath Double 3

VMOVSS_128_reg FMA[P0 | P1] FastPath Single 2

VMOVUPD_128_reg MAL[P2 | P3] FastPath Single 2

VMOVUPD_256_reg MAL[P2 | P3] FastPath Double 2

VMOVUPS_128_reg MAL[P2 | P3] FastPath Single 2

VMOVUPS_256_reg MAL[P2 | P3 FastPath Double 2

VMPSADBW_128_reg microcode microcode 4

VMULPD_128_reg FMA[P0 | P1] FastPath Single 6

VMULPD_256_reg FMA[P0 | P1] FastPath Double 6

VMULPS_128_reg FMA[P0 | P1] FastPath Single 6

VMULPS_256_reg FMA[P0 | P1] FastPath Double 6

VMULSD_128_reg FMA[P0 | P1] FastPath Single 6

VMULSS_128_reg FMA[P0 | P1] FastPath Single 6

VORPD_128_reg MAL[P2 | P3] FastPath Single 2

VORPD_256_reg MAL[P2 | P3] FastPath Double 2

VORPS_128_reg MAL[P2 | P3] FastPath Single 2

VORPS_256_reg MAL[P2 | P3] FastPath Double 2

Table 12: FPU Instruction Latencies (Continued)

Instruction Pipes Decode Type Latencies



276 Instruction Latencies Appendix B

47414 Rev. 3.06 January 2012Software Optimization Guide for AMD Family 15h Processors

VPABSB_128_reg MAL[P2 | P3] FastPath Single 2

VPABSD_128_reg MAL[P2 | P3] FastPath Single 2

VPABSW_128_reg MAL[P2 | P3] FastPath Single 2

VPACKSSDW_128_reg XBR[P1] FastPath Single 2

VPACKSSWB_128_reg XBR[P1] FastPath Single 2

VPACKUSDW_128_reg XBR[P1] FastPath Single 2

VPACKUSWB_128_reg XBR[P1] FastPath Single 2

VPADDB_128_reg MAL[P2 | P3] FastPath Single 2

VPADDD_128_reg MAL[P2 | P3] FastPath Single 2

VPADDQ_128_reg MAL[P2 | P3] FastPath Single 2

VPADDSB_128_reg MAL[P2 | P3] FastPath Single 2

VPADDSW_128_reg MAL[P2 | P3] FastPath Single 2

VPADDUSB_128_reg MAL[P2 | P3] FastPath Single 2

VPADDUSW_128_reg MAL[P2 | P3] FastPath Single 2

VPADDW_128_reg MAL[P2 | P3] FastPath Single 2

VPALIGNR_128_reg XBR[P1] FastPath Single 2

VPAND_128_reg MAL[P2 | P3] FastPath Single 2

VPANDN_128_reg MAL[P2 | P3] FastPath Single 2

VPAVGB_128_reg MAL[P2 | P3] FastPath Single 2

VPAVGW_128_reg MAL[P2 | P3] FastPath Single 2

VPBLENDVB_128_reg XBR[P1] FastPath Single 2

VPBLENDW_128_reg MAL[P2 | P3] FastPath Single 2

VPCLMULQDQ_128_reg microcode microcode 12

VPCMOV_128_reg XBR[P1] FastPath Single 2

VPCMOV_256_reg XBR[P1] FastPath Double 2

VPCMPEQB_128_reg MAL[P2 | P3] FastPath Single 2

VPCMPEQD_128_reg MAL[P2 | P3] FastPath Single 2

VPCMPEQQ_128_reg MAL[P2 | P3] FastPath Single 2

VPCMPEQW_128_reg MAL[P2 | P3] FastPath Single 2

VPCMPESTRI_128_reg microcode microcode 30

VPCMPESTRM_128_reg microcode microcode NA

VPCMPGTB_128_reg MAL[P2 | P3] FastPath Single 2

VPCMPGTD_128_reg MAL[P2 | P3] FastPath Single 2

VPCMPGTQ_128_reg MAL[P2 | P3] FastPath Single 2
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VPCMPGTW_128_reg MAL[P2 | P3] FastPath Single 2

VPCMPISTRI_128_xmm microcode microcode 10

VPCMPISTRM_128_xmm microcode microcode NA

VPCOMB_128_reg MAL[P2 | P3] FastPath Single 2

VPCOMD_128_reg MAL[P2 | P3] FastPath Single 2

VPCOMQ_128_reg MAL[P2 | P3] FastPath Single 2

VPCOMUB_128_reg MAL[P2 | P3] FastPath Single 2

VPCOMUD_128_reg MAL[P2 | P3] FastPath Single 2

VPCOMUQ_128_reg MAL[P2 | P3] FastPath Single 2

VPCOMUW_128_reg MAL[P2 | P3] FastPath Single 2

VPCOMW_128_reg MAL[P2 | P3] FastPath Single 2

VPERM2F128_256_reg microcode microcode 5

VPERMIL2PD_128_reg XBR[P1] FastPath Single 3

VPERMIL2PD_256_reg XBR[P1] FastPath Double 4

VPERMIL2PS_128_reg XBR[P1] FastPath Single 3

VPERMIL2PS_256_reg XBR[P1] FastPath Double 4

VPERMILPD_128_reg XBR[P1] FastPath Single 3

VPERMILPD_256_reg XBR[P1] FastPath Double 4

VPERMILPS_128_reg XBR[P1] FastPath Single 3

VPERMILPS_256_reg XBR[P1] FastPath Double 4

VPEXTRB_128_reg XBR[P1]/STO[P3] FastPath Double 2/2

VPEXTRD_128_xmm_reg64 XBR[P1]/STO[P3] FastPath Double 2/2

VPEXTRQ_128_xmm_reg64 XBR[P1]/STO[P3] FastPath Double 2/2

VPEXTRW_128_reg XBR[P1]/STO[P3] FastPath Double 2/2

VPHADDBD_128_reg MAL[P2 | P3] FastPath Single 2

VPHADDBQ_128_reg MAL[P2 | P3] FastPath Single 2

VPHADDBW_128_reg MAL[P2 | P3] FastPath Single 2

VPHADDD_128_reg microcode microcode NA

VPHADDDQ_128_reg MAL[P2 | P3] FastPath Single 2

VPHADDSW_128_reg microcode microcode 5

VPHADDUBD_128_reg MAL[P2 | P3] FastPath Single 2

VPHADDUBQ_128_reg MAL[P2 | P3] FastPath Single 2

VPHADDUBW_128_reg MAL[P2 | P3] FastPath Single 2

VPHADDUDQ_128_reg MAL[P2 | P3] FastPath Single 2
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VPHADDUWD_128_reg MAL[P2 | P3] FastPath Single 2

VPHADDUWQ_128_reg MAL[P2 | P3] FastPath Single 2

VPHADDW_128_reg microcode microcode 5

VPHADDWD_128_reg MAL[P2 | P3] FastPath Single 2

VPHADDWQ_128_reg MAL[P2 | P3] FastPath Single 2

VPHMINPOSUW_128_reg MAL[P2 | P3]/XBR[P1] FastPath Double 2/2

VPHSUBBW_128_reg MAL[P2 | P3] FastPath Single 2

VPHSUBD_128_reg microcode microcode 5

VPHSUBDQ_128_reg MAL[P2 | P3] FastPath Single 2

VPHSUBSW_128_reg microcode microcode 5

VPHSUBW_128_reg microcode microcode 5

VPHSUBWD_128_reg MAL[P2 | P3] FastPath Single 2

VPINSRB_128_reg XBR[P1] FastPath Single 2

VPINSRD_128_reg32_xmm XBR[P1] FastPath Single 2

VPINSRQ_128_reg64_xmm XBR[P1] FastPath Single 2

VPINSRW_128_reg XBR[P1] FastPath Double 2

VPMACSDD_128_reg MMA[P0] FastPath Single 5

VPMACSDQH_128_reg MMA[P0] FastPath Single 4

VPMACSDQL_128_reg MMA[P0] FastPath Single 4

VPMACSSDD_128_reg MMA[P0] FastPath Single 5

VPMACSSDQH_128_reg MMA[P0] FastPath Single 4

VPMACSSDQL_128_reg MMA[P0] FastPath Single 4

VPMACSSWD_128_reg MMA[P0] FastPath Single 4

VPMACSSWW_128_reg MMA[P0] FastPath Single 4

VPMACSWD_128_reg MMA[P0] FastPath Single 4

VPMACSWW_128_reg MMA[P0] FastPath Single 4

VPMADCSSWD_128_reg MMA[P0] FastPath Single 4

VPMADCSWD_128_reg MMA[P0] FastPath Single 4

VPMADDUBSW_128_reg MMA[P0] FastPath Single 4

VPMADDWD_128_reg MMA[P0] FastPath Single 4

VPMAXSB_128_reg MAL[P2 | P3] FastPath Single 2

VPMAXSD_128_reg MAL[P2 | P3] FastPath Single 2

VPMAXSW_128_reg MAL[P2 | P3] FastPath Single 2

VPMAXUB_128_reg MAL[P2 | P3] FastPath Single 2
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VPMAXUD_128_reg MAL[P2 | P3] FastPath Single 2

VPMAXUW_128_reg MAL[P2 | P3] FastPath Single 2

VPMINSB_128_reg MAL[P2 | P3] FastPath Single 2

VPMINSD_128_reg MAL[P2 | P3] FastPath Single 2

VPMINSW_128_reg MAL[P2 | P3] FastPath Single 2

VPMINUB_128_reg MAL[P2 | P3] FastPath Single 2

VPMINUD_128_reg MAL[P2 | P3] FastPath Single 2

VPMINUW_128_reg MAL[P2 | P3] FastPath Single 2

VPMOVMSKB_128_reg XBR[P1]/STO[P3] FastPath Double 2/2

VPMOVSXBD_128_reg XBR[P1] FastPath Single 2

VPMOVSXBQ_128_reg XBR[P1] FastPath Single 2

VPMOVSXBW_128_reg XBR[P1] FastPath Single 2

VPMOVSXDQ_128_reg XBR[P1] FastPath Single 2

VPMOVSXWD_128_reg XBR[P1] FastPath Single 2

VPMOVSXWQ_128_reg XBR[P1] FastPath Single 2

VPMOVZXBD_128_reg XBR[P1] FastPath Single 2

VPMOVZXBQ_128_reg XBR[P1] FastPath Single 2

VPMOVZXBW_128_reg XBR[P1] FastPath Single 2

VPMOVZXDQ_128_reg XBR[P1] FastPath Single 2

VPMOVZXWD_128_reg XBR[P1] FastPath Single 2

VPMOVZXWQ_128_reg XBR[P1] FastPath Single 2

VPMULDQ_128_reg MMA[P0] FastPath Single 4

VPMULHRSW_128_reg MMA[P0] FastPath Single 4

VPMULHUW_128_reg MMA[P0] FastPath Single 4

VPMULHW_128_reg MMA[P0] FastPath Single 4

VPMULLD_128_reg MMA[P0] FastPath Single 5

VPMULLW_128_reg MMA[P0] FastPath Single 4

VPMULUDQ_128_reg MMA[P0] FastPath Single 4

VPOR_128_reg MAL[P2 | P3] FastPath Single 2

VPPERM_128_reg XBR[P1] FastPath Single 2

VPROTB_128_reg XBR[P1] FastPath Single 2

VPROTD_128_reg XBR[P1] FastPath Single 2

VPROTQ_128_reg XBR[P1] FastPath Single 2

VPROTW_128_reg XBR[P1] FastPath Single 2
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VPSADBW_128_reg MAL[P2 | P3] FastPath Double 2

VPSHAB_128_reg XBR[P1] FastPath Single 3

VPSHAD_128_reg XBR[P1] FastPath Single 3

VPSHAQ_128_reg XBR[P1] FastPath Single 3

VPSHAW_128_reg XBR[P1] FastPath Single 3

VPSHLB_128_reg XBR[P1] FastPath Single 3

VPSHLD_128_reg XBR[P1] FastPath Single 3

VPSHLQ_128_reg XBR[P1] FastPath Single 3

VPSHLW_128_reg XBR[P1] FastPath Single 3

VPSHUFB_128_reg XBR[P1] FastPath Single 3

VPSHUFD_128_reg XBR[P1] FastPath Single 2

VPSHUFHW_128_reg XBR[P1] FastPath Single 2

VPSHUFLW_128_reg XBR[P1] FastPath Single 2

VPSIGNB_128_reg MAL[P2 | P3] FastPath Single 2

VPSIGND_128_reg MAL[P2 | P3] FastPath Single 2

VPSIGNW_128_reg MAL[P2 | P3] FastPath Single 2

VPSLLD_128_reg XBR[P1] FastPath Single 3

VPSLLDQ_128_reg XBR[P1] FastPath Single 2

VPSLLQ_128_reg XBR[P1] FastPath Single 3

VPSLLW_128_reg XBR[P1] FastPath Single 3

VPSRAD_128_reg XBR[P1] FastPath Single 3

VPSRAW_128_reg XBR[P1] FastPath Single 3

VPSRLD_128_reg XBR[P1] FastPath Single 3

VPSRLDQ_128_reg XBR[P1] FastPath Single 2

VPSRLQ_128_reg XBR[P1] FastPath Single 3

VPSRLW_128_reg XBR[P1] FastPath Single 3

VPSUBB_128_reg MAL[P2 | P3] FastPath Single 2

VPSUBD_128_reg MAL[P2 | P3] FastPath Single 2

VPSUBQ_128_reg MAL[P2 | P3] FastPath Single 2

VPSUBSB_128_reg MAL[P2 | P3] FastPath Single 2

VPSUBSW_128_reg MAL[P2 | P3] FastPath Single 2

VPSUBUSB_128_reg MAL[P2 | P3] FastPath Single 2

VPSUBUSW_128_reg MAL[P2 | P3] FastPath Single 2

VPSUBW_128_reg MAL[P2 | P3] FastPath Single 2
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VPTEST_128_reg XBR[P1]/STO[P3] FastPath Double 2/2

VPTEST_256_reg microcode microcode 9

VPUNPCKHBW_128_reg XBR[P1] FastPath Single 2

VPUNPCKHDQ_128_reg XBR[P1] FastPath Single 2

VPUNPCKHQDQ_128_reg XBR[P1] FastPath Single 2

VPUNPCKHWD_128_reg XBR[P1] FastPath Single 2

VPUNPCKLBW_128_reg XBR[P1] FastPath Single 2

VPUNPCKLDQ_128_reg XBR[P1] FastPath Single 2

VPUNPCKLQDQ_128_reg XBR[P1] FastPath Single 2

VPUNPCKLWD_128_reg XBR[P1] FastPath Single 2

VPXOR_128_reg MAL[P2 | P3] FastPath Single 2

VRCPPS_128_reg FMA[P0 | P1] FastPath Single 6

VRCPPS_256_reg FMA[P0 | P1] FastPath Double 6

VRCPSS_128_reg FMA[P0 | P1] FastPath Single 6

VROUNDPD_128_reg CVT[P0] FastPath Single 4

VROUNDPD_256_reg CVT[P0] FastPath Double 4

VROUNDPS_128_reg CVT[P0] FastPath Single 4

VROUNDPS_256_reg CVT[P0] FastPath Double 4

VROUNDSD_128_reg CVT[P0] FastPath Single 4

VROUNDSS_128_reg CVT[P0] FastPath Single 4

VRSQRTPS_128_reg FMA[P0 | P1] FastPath Single 6

VRSQRTPS_256_reg FMA[P0 | P1] FastPath Double 6

VRSQRTSS_128_reg FMA[P0 | P1] FastPath Single 6

VSHUFPD_128_reg XBR[P1] FastPath Single 2

VSHUFPD_256_reg XBR[P1] FastPath Double 3

VSHUFPS_128_reg XBR[P1] FastPath Single 2

VSHUFPS_256_reg XBR[P1] FastPath Double 3

VSQRTPD_128_reg FMA[P0 | P1] FastPath Single 38

VSQRTPD_256_reg FMA[P0 | P1] FastPath Double 38

VSQRTPS_128_reg FMA[P0 | P1] FastPath Single 29

VSQRTPS_256_reg FMA[P0 | P1] FastPath Double 29

VSQRTSD_128_reg FMA[P0 | P1] FastPath Single 38

VSQRTSS_128_reg FMA[P0 | P1] FastPath Single 29

VSUBPD_128_reg FMA[P0 | P1] FastPath Single 6
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VSUBPD_256_reg FMA[P0 | P1] FastPath Double 6

VSUBPS_128_reg FMA[P0 | P1] FastPath Single 6

VSUBPS_256_reg FMA[P0 | P1] FastPath Double 6

VSUBSD_128_reg FMA[P0 | P1] FastPath Single 6

VSUBSS_128_reg FMA[P0 | P1] FastPath Single 6

VTESTPD_128_reg XBR[P1]/STO[P3] FastPath Double 2/2

VTESTPD_256_reg microcode microcode 9

VTESTPS_128_reg XBR[P1]/STO[P3] FastPath Double 2/2

VTESTPS_256_reg microcode microcode 9

VUCOMISD_128_reg FMA[P0 | P1]/STO[P3] FastPath Double 2/2

VUCOMISS_128_reg FMA[P0 | P1]/STO[P3] FastPath Double 2/2

VUNPCKHPD_128_reg XBR[P1] FastPath Single 2

VUNPCKHPD_256_reg XBR[P1] FastPath Double 2

VUNPCKHPS_128_reg XBR[P1] FastPath Single 2

VUNPCKHPS_256_reg XBR[P1] FastPath Double 2

VUNPCKLPD_128_reg XBR[P1] FastPath Single 2

VUNPCKLPD_256_reg XBR[P1] FastPath Double 2

VUNPCKLPS_128_reg XBR[P1] FastPath Single 2

VUNPCKLPS_256_reg XBR[P1] FastPath Double 2

VXORPD_128_reg MAL[P2 | P3] FastPath Single 2

VXORPD_256_reg MAL[P2 | P3] FastPath Double 2

VXORPS_128_reg MAL[P2 | P3] FastPath Single 2

VXORPS_256_reg MAL[P2 | P3] FastPath Double 2

XORPD_reg MAL[P2 | P3] FastPath Single 2

XORPS_reg MAL[P2 | P3] FastPath Single 2
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ADDSD_reg FMA[P0 | P1] FastPath Single 6

ADDSS_reg FMA[P0 | P1] FastPath Single 6

ADDSUBPD_reg FMA[P0 | P1] FastPath Single 6

ADDSUBPS_reg FMA[P0 | P1] FastPath Single 6

AESDEC_reg XBR[P1]/FMA[P0] FastPath Double 2/6

AESDECLAST_reg XBR[P1]/FMA[P0] FastPath Double 2/6

AESENC_reg XBR[P1]/FMA[P0] FastPath Double 2/6

AESENCLAST_reg XBR[P1]/FMA[P0] FastPath Double 2/6

AESIMC_reg FMA[P0] FastPath Single 6

AESKEYGENASSIST_reg FMA[P0] FastPath Single 6

ANDNPD_reg MAL[P2 | P3] FastPath Single 2

ANDNPS_reg MAL[P2 | P3] FastPath Single 2

ANDPD_reg MAL[P2 | P3] FastPath Single 2

ANDPS_reg MAL[P2 | P3] FastPath Single 2

BLENDPD_reg MAL[P2 | P3] FastPath Single 2

BLENDPS_reg MAL[P2 | P3] FastPath Single 2

BLENDVPD_reg XBR[P1] FastPath Single 2

BLENDVPS_reg XBR[P1] FastPath Single 2

CMPPD_reg FMA[P0 | P1] FastPath Single 2

CMPPS_reg FMA[P0 | P1] FastPath Single 2

CMPSD_reg FMA[P0 | P1] FastPath Single 2

CMPSS_reg FMA[P0 | P1] FastPath Single 2

COMISD_reg FMA[P0 | P1]/STO[P3] FastPath Double 2/2

COMISS_reg FMA[P0 | P1]/STO[P3] FastPath Double 2/2

CRC32_reg16_reg16 microcode microcode 2

CRC32_reg32_reg32 microcode microcode 6

CRC32_reg8_reg8 microcode microcode 2

CVTDQ2PD_reg XBR[P1]/CVT[P0] FastPath Double 4/2

CVTDQ2PS_reg CVT[P0] FastPath Single 4

CVTPD2DQ_reg CVT[P0]/XBR[P1] FastPath Double 2/2

CVTPD2PI_reg CVT[P0]/XBR[P1] FastPath Double 4/2

CVTPD2PS_reg CVT[P0]/XBR[P1] FastPath Double 4/2

CVTPI2PD_reg XBR[P1]/CVT[P0] FastPath Double 2/4

CVTPI2PS_reg CVT[P0] FastPath Single 4
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CVTPS2DQ_reg CVT[P0] FastPath Single 4

CVTPS2PD_reg XBR[P1]/CVT[P0] FastPath Double 2/4

CVTPS2PI_reg CVT[P0] FastPath Single 4

CVTSD2SI_reg32 CVT[P0]/STO[P3] FastPath Double 4/2

CVTSD2SI_reg64 CVT[P0]/STO[P3] FastPath Double 4/2

CVTSD2SS_reg CVT[P0] FastPath Single 4

CVTSI2SD_reg32 CVT[P0] FastPath Double 4

CVTSI2SD_reg64 CVT[P0] FastPath Double 4

CVTSI2SS_reg32 CVT[P0] FastPath Double 4

CVTSI2SS_reg64 CVT[P0] FastPath Double 4

CVTSS2SD_reg CVT[P0] FastPath Single 4

CVTSS2SI_reg32 CVT[P0]/STO[P3] FastPath Double 4/2

CVTSS2SI_reg64 CVT[P0]/STO[P3] FastPath Double 4/2

CVTTPD2DQ_reg CVT[P0]/XBR[P1] FastPath Double 4/2

CVTTPD2PI_reg CVT[P0]/XBR[P1] FastPath Double 4/2

CVTTPS2DQ_reg CVT[P0] FastPath Single 4

CVTTPS2PI_reg CVT[P0] FastPath Single 4

CVTTSD2SI_reg32 CVT[P0]/STO[P3] FastPath Double 4/2

CVTTSD2SI_reg64 CVT[P0]/STO[P3] FastPath Double 4/2

CVTTSS2SI_reg32 CVT[P0]/STO[P3] FastPath Double 4/2

CVTTSS2SI_reg64 CVT[P0]/STO[P3] FastPath Double 4/2

DIVPD_reg FMA[P0 | P1] FastPath Single 27

DIVPS_reg FMA[P0 | P1] FastPath Single 24

DIVSD_reg FMA[P0 | P1] FastPath Single 27

DIVSS_reg FMA[P0 | P1] FastPath Single 24

DPPD_reg microcode microcode 15

DPPS_reg microcode microcode 25

EMMS microcode FastPath Single NA

EXTRACTPS_reg XBR[P1]/STO[P3] FastPath Double 2/2

EXTRQ_reg XBR[P1] FastPath Single 3

F2XM1_reg microcode microcode 189

FABS_reg FMA[P0 | P1] FastPath Single 2

FADD_reg FMA[P0 | P1] FastPath Single 6

FADDP_reg FMA[P0 | P1] FastPath Single 6
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FBLD_mem microcode microcode NA

FBSTP_mem microcode microcode NA

FCHS_reg FMA[P0 | P1] FastPath Single 2

FCLEX_reg microcode microcode NA

FCMOVB_reg microcode microcode NA

FCMOVBE_reg microcode microcode NA

FCMOVE_reg microcode microcode NA

FCMOVNB_reg microcode microcode NA

FCMOVNBE_reg microcode microcode NA

FCMOVNE_reg microcode microcode NA

FCMOVNU_reg microcode microcode NA

FCMOVU_reg microcode microcode NA

FCOM_reg FMA[P0 | P1] FastPath Single 2

FCOM2_reg FMA[P0 | P1] FastPath Single 2

FCOMI_reg FMA[P0 | P1]/STO[P3] FastPath Double 2/2

FCOMIP_reg FMA[P0 | P1]/STO[P3] FastPath Double 2/2

FCOMP_reg FMA[P0 | P1] FastPath Single 2

FCOMP3_reg FMA[P0 | P1] FastPath Single 2

FCOMP5_reg FMA[P0 | P1] FastPath Single 2

FCOMPP_reg FMA[P0 | P1] FastPath Single 2

FCOS_reg microcode microcode 151

FDECSTP_reg None FastPath Single 0

FDISI_reg microcode microcode NA

FDIV_reg FMA[P0 | P1] FastPath Single 42

FDIVP_reg FMA[P0 | P1] FastPath Single 42

FDIVR_reg FMA[P0 | P1] FastPath Single 42

FDIVRP_reg FMA[P0 | P1] FastPath Single 42

FENI_reg microcode microcode NA

FFREE_reg None FastPath Single 0

FFREEP_reg None FastPath Single 0

FIADD_mem CVT[P0]/FMA[P0 | P1] FastPath Double 4/6

FICOM_mem CVT[P0]/FMA[P0 | P1] FastPath Double 4/2

FICOMP_mem CVT[P0]/FMA[P0 | P1] FastPath Double 4/2

FIDIV_mem CVT[P0]/FMA[P0 | P1] FastPath Double 42
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FIDIVR_mem CVT[P0]/FMA[P0 | P1] FastPath Double 42

FILD_mem CVT[P0] FastPath Single 4

FIMUL_mem CVT[P0]/FMA[P0 | P1] FastPath Double 4/6

FINCSTP_reg None FastPath Single 0

FINIT_reg microcode microcode NA

FIST_mem CVT[P0]/STO[P3] FastPath Double 4/2

FISTP_mem CVT[P0]/STO[P3] FastPath Double 4/2

FISTTP_mem CVT[P0]/STO[P3] FastPath Double 4/2

FISUB_mem CVT[P0]/FMA[P0 | P1] FastPath Double 4/6

FISUBR_mem CVT[P0]/FMA[P0 | P1] FastPath Double 4/6

FLD_reg FMA[P0 | P1] FastPath Single 2

FLD1_reg CVT[P0] FastPath Single 4

FLDCW_mem microcode microcode NA

FLDENV_mem microcode microcode NA

FLDL2E_reg CVT[P0] FastPath Single 4

FLDL2T_reg CVT[P0] FastPath Single 4

FLDLG2_reg CVT[P0] FastPath Single 4

FLDLN2_reg CVT[P0] FastPath Single 4

FLDPI_reg CVT[P0] FastPath Single 4

FLDZ_reg CVT[P0] FastPath Single 4

FMADDPD_reg FMA[P0 | P1] FastPath Single 6

FMADDPS_reg FMA[P0 | P1] FastPath Single 6

FMADDSD_reg FMA[P0 | P1] FastPath Single 6

FMADDSS_reg FMA[P0 | P1] FastPath Single 6

FMSUBPD_reg FMA[P0 | P1] FastPath Single 6

FMSUBPS_reg FMA[P0 | P1] FastPath Single 6

FMSUBSD_reg FMA[P0 | P1] FastPath Single 6

FMSUBSS_reg FMA[P0 | P1] FastPath Single 6

FMUL_reg FMA[P0 | P1] FastPath Single 6

FMULP_reg FMA[P0 | P1] FastPath Single 6

FNCLEX_reg microcode microcode NA

FNINIT_reg microcode microcode NA

FNMADDPD_reg FMA[P0 | P1] FastPath Single 6

FNMADDPS_reg FMA[P0 | P1] FastPath Single 6
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FNMADDSD_reg FMA[P0 | P1] FastPath Single 6

FNMADDSS_reg FMA[P0 | P1] FastPath Single 6

FNMSUBPD_reg FMA[P0 | P1] FastPath Single 6

FNMSUBPS_reg FMA[P0 | P1] FastPath Single 6

FNMSUBSD_reg FMA[P0 | P1] FastPath Single 6

FNMSUBSS_reg FMA[P0 | P1] FastPath Single 6

FNOP_reg None FastPath Single 0

FNSAVE_mem microcode microcode NA

FNSTCW_mem microcode microcode NA

FNSTENV_mem microcode microcode NA

FNSTSW_reg microcode microcode NA

FPATAN_reg microcode microcode 433

FPREM_reg FMA[P1] FastPath Single 10

FPREM1_reg FMA[P1] FastPath Single 10

FPTAN_reg microcode FastPath Single 240

FRNDINT_reg CVT[P0] FastPath Single 4

FRSTOR_mem microcode microcode NA

FSAVE_mem microcode microcode NA

FSCALE_reg microcode microcode NA

FSETPM_reg microcode microcode NA

FSIN_reg microcode microcode 148

FSINCOS_reg microcode microcode 143

FSQRT_reg FMA[P0 | P1] FastPath Single 52

FST_reg FMA[P0 | P1] FastPath Single 2

FSTCW_mem microcode microcode NA

FSTENV_mem microcode microcode NA

FSTP_reg FMA[P0 | P1] FastPath Single 2

FSTP1_reg FMA[P0 | P1] FastPath Single 2

FSTP8_reg FMA[P0 | P1] FastPath Single 2

FSTP9_reg FMA[P0 | P1] FastPath Single 2

FSTSW_reg microcode microcode NA

FSUB_reg FMA[P0 | P1] FastPath Single 6

FSUBP_reg FMA[P0 | P1] FastPath Single 10

FSUBR_reg FMA[P0 | P1] FastPath Single 6
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FSUBRP_reg FMA[P0 | P1] FastPath Single 5

FTST_reg FMA[P0 | P1] FastPath Single 2

FUCOM_reg FMA[P0 | P1] FastPath Single 2

FUCOMI_reg FMA[P0 | P1]/STO[P3] FastPath Double 2/2

FUCOMIP_reg FMA[P0 | P1]/STO[P3] FastPath Double 2/2

FUCOMP_reg FMA[P0 | P1] FastPath Single 2

FUCOMPP_reg FMA[P0 | P1] FastPath Single 2

FWAIT(WAIT)_reg None FastPath Single 0

FXAM_reg FMA[P0 | P1] FastPath Single 2

FXCH_reg FMA[P0 | P1] FastPath Single 2

FXCH4_reg FMA[P0 | P1] FastPath Single 2

FXCH7_reg FMA[P0 | P1] FastPath Single 2

FXRSTOR_mem microcode microcode NA

FXSAVE_mem microcode microcode NA

FXTRACT_reg microcode microcode NA

FYL2X_reg microcode microcode NA

FYL2XP1_reg microcode microcode 241

HADDPD_reg microcode microcode 11

HADDPS_reg microcode microcode 11

HSUBPD_reg microcode microcode 11

HSUBPS_reg microcode microcode 11

INSERTPS_reg XBR[P1] FastPath Single 2

INSERTQ_reg XBR[P1] FastPath Single 3

LDDQU_mem None FastPath Single 4

LDMXCSR_mem microcode microcode NA

MASKMOVDQU_reg microcode microcode NA

MASKMOVQ_mmx_reg microcode microcode NA

MAXPD_reg FMA[P0 | P1] FastPath Single 2

MAXPS_reg FMA[P0 | P1] FastPath Single 2

MAXSD_reg FMA[P0 | P1] FastPath Single 2

MAXSS_reg FMA[P0 | P1] FastPath Single 2

MFENCE_reg microcode microcode NA

MINPD_reg FMA[P0 | P1] FastPath Single 2

MINPS_reg FMA[P0 | P1] FastPath Single 2
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MINSD_reg FMA[P0 | P1] FastPath Single 2

MINSS_reg FMA[P0 | P1] FastPath Single 2

MOVAPD_reg MAL[P2 | P3] FastPath Single 0

MOVAPS_reg MAL[P2 | P3] FastPath Single 0

MOVD_mem32_reg32 None FastPath Single 4

MOVD_mem64_reg64 None FastPath Single 4

MOVD_mmx_mem32 None FastPath Single 4

MOVD_mmx_mem64 STO[P3] FastPath Single 4

MOVD_reg32_xmm STO[P3] FastPath Single 2

MOVD_reg64_xmm STO[P3] FastPath Single 2

MOVD_xmm_reg32 None FastPath Double 8

MOVD_xmm_reg64 None FastPath Double 8

MOVDDUP_reg XBR[P1] FastPath Single 2

MOVDQ2Q_reg MAL[P2 | P3] FastPath Single 2

MOVDQA_reg MAL[P2 | P3] FastPath Single 2

MOVDQU_reg MAL[P2 | P3] FastPath Single 2

MOVHLPS_reg XBR[P1] FastPath Single 2

MOVHPD_xmm_mem XBR[P1] FastPath Single 4

MOVHPD_mem_xmm XBR[P1] FastPath Double 4

MOVHPS_xmm_mem XBR[P1] FastPath Single 4

MOVHPS_mem_xmm XBR[P1] FastPath Double 4

MOVLHPS_reg XBR[P1] FastPath Single 2

MOVLPD_mem FMA[P0 | P1] FastPath Single 4

MOVLPS_mem FMA[P0 | P1] FastPath Single 4

MOVMSKPD_reg XBR[P1]/STO[P3] FastPath Double 2/2

MOVMSKPS_reg XBR[P1]/STO[P3] FastPath Double 2/2

MOVNTDQ_mem STO[P3] FastPath Single 4

MOVNTDQA_mem STO[P3] FastPath Single 4

MOVNTPD_mem STO[P3] FastPath Single 4

MOVNTPS_mem STO[P3] FastPath Single 4

MOVNTQ_mmx_mem STO[P3] FastPath Single 4

MOVNTSD_mem STO[P3] FastPath Single 4

MOVNTSS_mem STO[P3] FastPath Single 4

MOVQ_mem MAL[P2 | P3] FastPath Single 4
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MOVQ_mmx_reg MAL[P2 | P3] FastPath Single 2

MOVQ_reg MAL[P2 | P3] FastPath Single 2

MOVQ2DQ_reg MAL[P2 | P3] FastPath Single 2

MOVSD_reg FMA[P0 | P1] FastPath Single 2

MOVSHDUP_reg XBR[P1] FastPath Single 2

MOVSLDUP_reg XBR[P1] FastPath Single 2

MOVSS_reg FMA[P0 | P1] FastPath Single 2

MOVUPD_reg MAL[P2 | P3] FastPath Single 0

MOVUPS_reg MAL[P2 | P3] FastPath Single 0

MPSADBW_reg microcode microcode 8

MULPD_reg FMA[P0 | P1] FastPath Single 6

MULPS_reg FMA[P0 | P1] FastPath Single 6

MULSD_reg FMA[P0 | P1] FastPath Single 6

MULSS_reg FMA[P0 | P1] FastPath Single 6

ORPD_reg MAL[P2 | P3] FastPath Single 2

ORPS_reg MAL[P2 | P3] FastPath Single 2

PABSB_mmx_reg MAL[P2 | P3] FastPath Single 2

PABSB_reg MAL[P2 | P3] FastPath Single 2

PABSD_mmx_reg MAL[P2 | P3] FastPath Single 2

PABSD_reg MAL[P2 | P3] FastPath Single 2

PABSW_mmx_reg MAL[P2 | P3] FastPath Single 2

PABSW_reg MAL[P2 | P3] FastPath Single 2

PACKSSDW_mmx_reg XBR[P1] FastPath Single 2

PACKSSDW_reg XBR[P1] FastPath Single 2

PACKSSWB_mmx_reg XBR[P1] FastPath Single 2

PACKSSWB_reg XBR[P1] FastPath Single 2

PACKUSDW_reg XBR[P1] FastPath Single 2

PACKUSWB_mmx_reg XBR[P1] FastPath Single 2

PACKUSWB_reg XBR[P1] FastPath Single 2

PADDB_mmx_reg MAL[P2 | P3] FastPath Single 2

PADDB_reg MAL[P2 | P3] FastPath Single 2

PADDD_mmx_reg MAL[P2 | P3] FastPath Single 2

PADDD_reg MAL[P2 | P3] FastPath Single 2

PADDQ_mmx_reg MAL[P2 | P3] FastPath Single 2
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PADDQ_reg MAL[P2 | P3] FastPath Single 2

PADDSB_mmx_reg MAL[P2 | P3] FastPath Single 2

PADDSB_reg MAL[P2 | P3] FastPath Single 2

PADDSW_mmx_reg MAL[P2 | P3] FastPath Single 2

PADDSW_reg MAL[P2 | P3] FastPath Single 2

PADDUSB_mmx_reg MAL[P2 | P3] FastPath Single 2

PADDUSB_reg MAL[P2 | P3] FastPath Single 2

PADDUSW_mmx_reg MAL[P2 | P3] FastPath Single 2

PADDUSW_reg MAL[P2 | P3] FastPath Single 2

PADDW_mmx_reg MAL[P2 | P3] FastPath Single 2

PADDW_reg MAL[P2 | P3] FastPath Single 2

PALIGNR_mmx_reg XBR[P1] FastPath Single 2

PALIGNR_reg XBR[P1] FastPath Single 2

PAND_mmx_reg MAL[P2 | P3] FastPath Single 2

PAND_reg MAL[P2 | P3] FastPath Single 2

PANDN_mmx_reg MAL[P2 | P3] FastPath Single 2

PANDN_reg MAL[P2 | P3] FastPath Single 2

PAVGB_mmx_reg MAL[P2 | P3] FastPath Single 2

PAVGB_reg MAL[P2 | P3] FastPath Single 2

PAVGW_mmx_reg MAL[P2 | P3] FastPath Single 2

PAVGW_reg MAL[P2 | P3] FastPath Single 2

PBLENDVB_reg XBR[P1] FastPath Single 2

PBLENDW_reg MAL[P2 | P3] FastPath Single 2

PCLMULQDQ_reg microcode microcode 12

PCMPEQB_mmx_reg MAL[P2 | P3] FastPath Single 2

PCMPEQB_reg MAL[P2 | P3] FastPath Single 2

PCMPEQD_mmx_reg MAL[P2 | P3] FastPath Single 2

PCMPEQD_reg MAL[P2 | P3] FastPath Single 2

PCMPEQQ_reg MAL[P2 | P3] FastPath Single 2

PCMPEQW_mmx_reg MAL[P2 | P3] FastPath Single 2

PCMPEQW_reg MAL[P2 | P3] FastPath Single 2

PCMPESTRI_reg microcode microcode 30

PCMPESTRM_reg microcode microcode NA

PCMPGTB_mmx_reg MAL[P2 | P3] FastPath Single 2
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PCMPGTB_reg MAL[P2 | P3] FastPath Single 2

PCMPGTD_mmx_reg MAL[P2 | P3] FastPath Single 2

PCMPGTD_reg MAL[P2 | P3] FastPath Single 2

PCMPGTQ_reg MAL[P2 | P3] FastPath Single 2

PCMPGTW_mmx_reg MAL[P2 | P3] FastPath Single 2

PCMPGTW_reg MAL[P2 | P3] FastPath Single 2

PCMPISTRI_mr microcode microcode 10

PCMPISTRM_mr microcode microcode NA

PEXTRB_reg XBR[P1]/STO[P3] FastPath Double 2/2

PEXTRD_reg32_xmm XBR[P1]/STO[P3] FastPath Dboule 2/2

PEXTRQ_reg64_xmm XBR[P1]/STO[P3] FastPath Double 2/2

PEXTRW_mmx_reg XBR[P1]/STO[P3] FastPath Double 2/2

PEXTRW_reg XBR[P1]/STO[P3] FastPath Double 2/2

PHADDD_mmx_reg microcode microcode 6

PHADDD_reg microcode microcode 6

PHADDSW_mmx_reg microcode microcode 6

PHADDSW_reg microcode microcode 6

PHADDW_mmx_reg microcode microcode NA

PHADDW_reg microcode microcode 6

PHMINPOSUW_reg MAL[P2 | P3] / XBR[P1] FastPath Single 2/2

PHSUBD_mmx_reg microcode microcode 6

PHSUBD_reg microcode microcode 6

PHSUBSW_mmx_reg microcode microcode 6

PHSUBSW_reg microcode microcode 6

PHSUBW_mmx_reg microcode microcode 6

PHSUBW_reg microcode microcode 6

PINSRB_reg XBR[P1] FastPath Single 2

PINSRD_OP32_reg XBR[P1] FastPath Single 2

PINSRQ_OP64_reg XBR[P1] FastPath Single 2

PINSRW_mmx_reg XBR[P1] FastPath Single 2

PINSRW_reg XBR[P1] FastPath Double 2

PMADDUBSW_mmx_reg MMA[P0] FastPath Single 4

PMADDUBSW_reg MMA[P0] FastPath Single 4

PMADDWD_mmx_reg MMA[P0] FastPath Single 4
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PMADDWD_reg MMA[P0] FastPath Single 4

PMAXSB_reg MAL[P2 | P3] FastPath Single 2

PMAXSD_reg MAL[P2 | P3] FastPath Single 2

PMAXSW_mmx_reg MAL[P2 | P3] FastPath Single 2

PMAXSW_reg MAL[P2 | P3] FastPath Single 2

PMAXUB_mmx__reg MAL[P2 | P3] FastPath Single 2

PMAXUB_reg MAL[P2 | P3] FastPath Single 2

PMAXUD_reg MAL[P2 | P3] FastPath Single 2

PMAXUW_reg MAL[P2 | P3] FastPath Single 2

PMINSB_reg MAL[P2 | P3] FastPath Single 2

PMINSD_reg MAL[P2 | P3] FastPath Single 2

PMINSW_mmx_reg MAL[P2 | P3] FastPath Single 2

PMINSW_reg MAL[P2 | P3] FastPath Single 2

PMINUB_mmx_reg MAL[P2 | P3] FastPath Single 2

PMINUB_reg MAL[P2 | P3] FastPath Single 2

PMINUD_reg MAL[P2 | P3] FastPath Single 2

PMINUW_reg MAL[P2 | P3] FastPath Single 2

PMOVMSKB_mmx_reg XBR[P1]/STO[P3] FastPath Double 2/2

PMOVMSKB_reg XBR[P1]/STO[P3] FastPath Double 2/2

PMOVSXBD_reg XBR[P1] FastPath Single 2

PMOVSXBQ_reg XBR[P1] FastPath Single 2

PMOVSXBW_reg XBR[P1] FastPath Single 2

PMOVSXDQ_reg XBR[P1] FastPath Single 2

PMOVSXWD_reg XBR[P1] FastPath Single 2

PMOVSXWQ_reg XBR[P1] FastPath Single 2

PMOVZXBD_reg XBR[P1] FastPath Single 2

PMOVZXBQ_reg XBR[P1] FastPath Single 2

PMOVZXBW_reg XBR[P1] FastPath Single 2

PMOVZXDQ_reg XBR[P1] FastPath Single 2

PMOVZXWD_reg XBR[P1] FastPath Single 2

PMOVZXWQ_reg XBR[P1] FastPath Single 2

PMULDQ_reg MMA[P0] FastPath Single 4

PMULHRSW_mmx_reg MMA[P0] FastPath Single 4

PMULHRSW_reg MMA[P0] FastPath Single 4
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PMULHUW_mmx_reg MMA[P0] FastPath Single 4

PMULHUW_reg MMA[P0] FastPath Single 4

PMULHW_mmx_reg MMA[P0] FastPath Single 4

PMULHW_reg MMA[P0] FastPath Single 4

PMULLD_reg MMA[P0] FastPath Single 5

PMULLW_mmx_reg MMA[P0] FastPath Single 4

PMULLW_reg MMA[P0] FastPath Single 4

PMULUDQ_mmx_reg MMA[P0] FastPath Single 4

PMULUDQ_reg MMA[P0] FastPath Single 4

POR_reg MAL[P2 | P3] FastPath Single 2

POR<mmx>_reg MAL[P2 | P3] FastPath Single 2

PSADBW_mmx_reg MAL[P2 | P3] FastPath Double 2

PSADBW_reg MAL[P2 | P3] FastPath Double 2

PSHUFB_mmx_reg XBR[P1] FastPath Single 3

PSHUFB_reg XBR[P1] FastPath Single 3

PSHUFD_reg XBR[P1] FastPath Single 2

PSHUFHW_reg XBR[P1] FastPath Single 2

PSHUFLW_reg XBR[P1] FastPath Single 2

PSHUFW_mmx_reg XBR[P1] FastPath Single 2

PSIGNB_mmx_reg MAL[P2 | P3] FastPath Single 2

PSIGNB_reg MAL[P2 | P3] FastPath Single 2

PSIGND_mmx_reg MAL[P2 | P3] FastPath Single 2

PSIGND_reg MAL[P2 | P3] FastPath Single 2

PSIGNW_mmx_reg MAL[P2 | P3] FastPath Single 2

PSIGNW_reg MAL[P2 | P3] FastPath Single 2

PSLLD_mmx_reg XBR[P1] FastPath Single 3

PSLLD_reg XBR[P1] FastPath Single 3

PSLLDQ_reg XBR[P1] FastPath Single 2

PSLLQ_mmx_reg XBR[P1] FastPath Single 3

PSLLQ_reg XBR[P1] FastPath Single 3

PSLLW_mmx_reg XBR[P1] FastPath Single 3

PSLLW_reg XBR[P1] FastPath Single 3

PSRAD_mmx_reg XBR[P1] FastPath Single 3

PSRAD_reg XBR[P1] FastPath Single 3
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PSRAW_mmx_reg XBR[P1] FastPath Single 3

PSRAW_reg XBR[P1] FastPath Single 3

PSRLD_mmx_reg XBR[P1] FastPath Single 3

PSRLD_reg XBR[P1] FastPath Single 3

PSRLDQ_reg XBR[P1] FastPath Single 2

PSRLQ_mmx_reg XBR[P1] FastPath Single 3

PSRLQ_reg XBR[P1] FastPath Single 3

PSRLW_mmx_reg XBR[P1] FastPath Single 3

PSRLW_reg XBR[P1] FastPath Single 3

PSUBB_mmx_reg MAL[P2 | P3] FastPath Single 2

PSUBB_reg MAL[P2 | P3] FastPath Single 2

PSUBD_mmx_reg MAL[P2 | P3] FastPath Single 2

PSUBD_reg MAL[P2 | P3] FastPath Single 2

PSUBQ_mmx_reg MAL[P2 | P3] FastPath Single 2

PSUBQ_reg MAL[P2 | P3] FastPath Single 2

PSUBSB_mmx_reg MAL[P2 | P3] FastPath Single 2

PSUBSB_reg MAL[P2 | P3] FastPath Single 2

PSUBSW_mmx_reg MAL[P2 | P3] FastPath Single 2

PSUBSW_reg MAL[P2 | P3] FastPath Single 2

PSUBUSB_mmx_reg MAL[P2 | P3] FastPath Single 2

PSUBUSB_reg MAL[P2 | P3] FastPath Single 2

PSUBUSW_mmx_reg MAL[P2 | P3] FastPath Single 2

PSUBUSW_reg MAL[P2 | P3] FastPath Single 2

PSUBW_mmx_reg MAL[P2 | P3] FastPath Single 2

PSUBW_reg MAL[P2 | P3] FastPath Single 2

PTEST_reg XBR[P1]/STO[P3] FastPath Double 2/2

PUNPCKHBW_mmx_reg XBR[P1] FastPath Single 2

PUNPCKHBW_reg XBR[P1] FastPath Single 2

PUNPCKHDQ_mmx_reg XBR[P1] FastPath Single 2

PUNPCKHDQ_reg XBR[P1] FastPath Single 2

PUNPCKHQDQ_reg XBR[P1] FastPath Single 2

PUNPCKHWD_mmx_reg XBR[P1] FastPath Single 2

PUNPCKHWD_reg XBR[P1] FastPath Single 2

PUNPCKLBW_mmx_reg XBR[P1] FastPath Single 2
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PUNPCKLBW_reg XBR[P1] FastPath Single 2

PUNPCKLDQ_mmx_reg XBR[P1] FastPath Single 2

PUNPCKLDQ_reg XBR[P1] FastPath Single 2

PUNPCKLQDQ_reg XBR[P1] FastPath Single 2

PUNPCKLWD_mmx_reg XBR[P1] FastPath Single 2

PUNPCKLWD_reg XBR[P1] FastPath Single 2

PXOR_mmx_reg MAL[P2 | P3] FastPath Single 2

PXOR_reg MAL[P2 | P3] FastPath Single 2

RCPPS_reg FMA[P0 | P1] FastPath Single 6

RCPSS_reg FMA[P0 | P1] FastPath Single 6

ROUNDPD_reg CVT[P0] FastPath Single 4

ROUNDPS_reg CVT[P0] FastPath Single 4

ROUNDSD_reg CVT[P0] FastPath Single 4

ROUNDSS_reg CVT[P0] FastPath Single 4

RSQRTPS_reg FMA[P0 | P1] FastPath Single 6

RSQRTSS_reg FMA[P0 | P1] FastPath Single 6

SHUFPD_reg XBR[P1] FastPath Single 2

SHUFPS_reg XBR[P1] FastPath Single 2

SQRTPD_reg FMA[P0 | P1] FastPath Single 38

SQRTPS_reg FMA[P0 | P1] FastPath Single 29

SQRTSD_reg FMA[P0 | P1] FastPath Single 38

SQRTSS_reg FMA[P0 | P1] FastPath Single 29

STMXCSR_mem microcode microcode NA

SUBPD_reg FMA[P0 | P1] FastPath Single 6

SUBPS_reg FMA[P0 | P1] FastPath Single 6

SUBSD_reg FMA[P0 | P1] FastPath Single 6

SUBSS_reg FMA[P0 | P1] FastPath Single 6

UCOMISD_reg FMA[P0 | P1]/STO[P3] FastPath Double 2/2

UCOMISS_reg FMA[P0 | P1]/STO[P3] FastPath Double 2/2

UNPCKHPD_reg XBR[P1] FastPath Single 2

UNPCKHPS_reg XBR[P1] FastPath Single 2

UNPCKLPD_reg XBR[P1] FastPath Single 2

UNPCKLPS_reg XBR[P1] FastPath Single 2

VADDPD_128_reg FMA[P0 | P1] FastPath Single 6
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VADDPD_256_reg FMA[P0 | P1] FastPath Double 6

VADDPS_128_reg FMA[P0 | P1] FastPath Single 6

VADDPS_256_reg FMA[P0 | P1] FastPath Double 6

VADDSD_128_reg FMA[P0 | P1] FastPath Single 6

VADDSS_128_reg FMA[P0 | P1] FastPath Single 6

VADDSUBPD_128_reg FMA[P0 | P1] FastPath Single 6

VADDSUBPD_256_reg FMA[P0 | P1] FastPath Double 6

VADDSUBPS_128_reg FMA[P0 | P1] FastPath Single 6

VADDSUBPS_256_reg FMA[P0 | P1] FastPath Double 6

VAESDEC_128_reg XBR[P1]/FMA[P0] FastPath Double 2/6

VAESDECLAST_128_reg XBR[P1]/FMA[P0] FastPath Double 2/6

VAESENC_128_reg XBR[P1]/FMA[P0] FastPath Double 2/6

VAESENCLAST_128_reg XBR[P1]/FMA[P0] FastPath Double 2/6

VAESIMC_128_reg FMA[P0] FastPath Single 6

VAESKEYGENASSIST_128_reg FMA[P0] FastPath Single 6

VANDNPD_128_reg MAL[P2 | P3] FastPath Single 2

VANDNPD_256_reg MAL[P2 | P3] FastPath Double 2

VANDNPS_128_reg MAL[P2 | P3] FastPath Single 2

VANDNPS_256_reg MAL[P2 | P3] FastPath Double 2

VANDPD_128_reg MAL[P2 | P3] FastPath Single 2

VANDPD_256_reg MAL[P2 | P3] FastPath Double 2

VANDPS_128_reg MAL[P2 | P3] FastPath Single 2

VANDPS_256_reg MAL[P2 | P3] FastPath Double 2

VBLENDPD_128_reg MAL[P2 | P3] FastPath Single 2

VBLENDPD_256_reg MAL[P2 | P3] FastPath Double 2

VBLENDPS_128_reg MAL[P2 | P3] FastPath Single 2

VBLENDPS_256_reg MAL[P2 | P3] FastPath Double 2

VBLENDVPD_128_reg XBR[P1] FastPath Single 2

VBLENDVPD_256_reg XBR[P1] FastPath Double 2

VBLENDVPS_128_reg XBR[P1] FastPath Single 2

VBLENDVPS_256_reg XBR[P1] FastPath Double 2

VBROADCASTF128_256_mem MAL[P2 | P3] FastPath Double 6

VBROADCASTSD_256_mem MAL[P2 | P3] FastPath Double 6

VBROADCASTSS_128_mem MAL[P2 | P3] FastPath Single 2
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VBROADCASTSS_256_mem MAL[P2 | P3] FastPath Double 6

VCMPPD_128_reg FMA[P0 | P1] FastPath Single 2

VCMPPD_256_reg FMA[P0 | P1] FastPath Double 2

VCMPPS_128_reg FMA[P0 | P1] FastPath Single 2

VCMPPS_256_reg FMA[P0 | P1] FastPath Double 2

VCMPSD_128_reg FMA[P0 | P1] FastPath Single 2

VCMPSS_128_reg FMA[P0 | P1] FastPath Single 2

VCOMISD_128_reg FMA[P0 | P1]/STO[P3] FastPath Double 2/2

VCOMISS_128_reg FMA[P0 | P1]/STO[P3] FastPath Double 2/2

VCVTDQ2PD_128_reg XBR[P1]/CVT[P0] FastPath Double 2/4

VCVTDQ2PD_256_reg microcode microcode 6

VCVTDQ2PS_128_reg CVT[P0] FastPath Single 4

VCVTDQ2PS_256_reg microcode microcode 4

VCVTPD2DQ_128_reg CVT[P0]/XBR[P1] FastPath Double 4/2

VCVTPD2DQ_256_reg microcode microcode 6

VCVTPD2PS_128_reg CVT[P0]/XBR[P1] FastPath Double 4/2

VCVTPD2PS_256_reg microcode microcode 6

VCVTPH2PS_128_reg microcode microcode 7

VCVTPH2PS_256_reg microcode microcode 7

VCVTPS2DQ_128_reg CVT[P0] FastPath Single 4

VCVTPS2DQ_256_reg microcode microcode 4

VCVTPS2PD_128_reg XBR[P1]/CVT[P0] FastPath Double 2/4

VCVTPS2PD_256_reg microcode microcode 6

VCVTPS2PH_128_reg microcode microcode 7

VCVTPS2PH_256_reg microcode microcode 7

VCVTSD2SI_128_OP32_reg CVT[P0]/STO[P3] FastPath Double 4/2

VCVTSD2SI_128_OP64_reg CVT[P0]/STO[P3] FastPath Double 4/2

VCVTSD2SS_128_reg CVT[P0] FastPath Single 4

VCVTSI2SD_128_OP32_reg CVT[P0] FastPath Double 4

VCVTSI2SD_128_OP64_reg CVT[P0] FastPath Double 4

VCVTSI2SS_128_OP32_reg CVT[P0] FastPath Double 4

VCVTSI2SS_128_OP64_reg CVT[P0] FastPath Double 4

VCVTSS2SD_128_reg CVT[P0] FastPath Single 4
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VCVTSS2SI_128_reg32_xmm CVT[P0]/STO[P3] FastPath Double 4/2

VCVTSS2SI_128_reg64_xmm CVT[P0]/STO[P3] FastPath Double 4/2

VCVTTPD2DQ_128_reg CVT[P0]/XBR[P1] FastPath Double 4/2

VCVTTPD2DQ_256_reg microcode microcode 6

VCVTTPS2DQ_128_reg CVT[P0] FastPath Single 4

VCVTTPS2DQ_256_reg microcode microcode 4

VCVTTSD2SI_128_reg32_xmm CVT[P0]/STO[P3] FastPath Double 4/2

VCVTTSD2SI_128_reg64_xmm CVT[P0]/STO[P3] FastPath Double 4/2

VCVTTSS2SI_128_reg32_xmm CVT[P0]/STO[P3] FastPath Double 4/2

VCVTTSS2SI_128_reg64_xmm CVT[P0]/STO[P3] FastPath Double 4/2

VDIVPD_128_reg FMA[P0 | P1] FastPath Single 27

VDIVPD_256_reg FMA[P0 | P1] FastPath Double 27

VDIVPS_128_reg FMA[P0 | P1] FastPath Single 24

VDIVPS_256_reg FMA[P0 | P1] FastPath Double 24

VDIVSD_128_reg FMA[P0 | P1] FastPath Single 27

VDIVSS_128_reg FMA[P0 | P1] FastPath Single 24

VDPPD_128_reg microcode microcode 15

VDPPS_128_reg microcode microcode 25

VDPPS_256_reg microcode microcode 25

VEXTRACTF128_256_reg MAL[P2 | P3] FastPath Single 2

VEXTRACTPS_128_reg XBR[P1]/STO[P3] FastPath Double 2/2

VFMADD132PD_128_reg FMA[P0 | P1] FastPath Single 6

VFMADD132PD_256_reg FMA[P0 | P1] FastPath Double 6

VFMADD132PS_128_reg FMA[P0 | P1] FastPath Single 6

VFMADD132PS_256_reg FMA[P0 | P1] FastPath Double 6

VFMADD132SD_128_reg FMA[P0 | P1] FastPath Single 6

VFMADD132SD_256_reg FMA[P0 | P1] FastPath Double 6

VFMADD132SS_128_reg FMA[P0 | P1] FastPath Single 6

VFMADD132SS_256_reg FMA[P0 | P1] FastPath Double 6

VFMADD213PD_128_reg FMA[P0 | P1] FastPath Single 6

VFMADD213PD_256_reg FMA[P0 | P1] FastPath Double 6

VFMADD213PS_128_reg FMA[P0 | P1] FastPath Single 6

VFMADD213PS_256_reg FMA[P0 | P1] FastPath Double 6

VFMADD213SD_128_reg FMA[P0 | P1] FastPath Single 6
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VFMADD213SD_256_reg FMA[P0 | P1] FastPath Double 6

VFMADD213SS_128_reg FMA[P0 | P1] FastPath Single 6

VFMADD213SS_256_reg FMA[P0 | P1] FastPath Double 6

VFMADD231PD_128_reg FMA[P0 | P1] FastPath Single 6

VFMADD231PD_256_reg FMA[P0 | P1] FastPath Double 6

VFMADD231PS_128_reg FMA[P0 | P1] FastPath Single 6

VFMADD231PS_256_reg FMA[P0 | P1] FastPath Double 6

VFMADD231SD_128_reg FMA[P0 | P1] FastPath Single 6

VFMADD231SD_256_reg FMA[P0 | P1] FastPath Double 6

VFMADD231SS_128_reg FMA[P0 | P1] FastPath Single 6

VFMADD231SS_256_reg FMA[P0 | P1] FastPath Double 6

VFMADDPD_256_reg FMA[P0 | P1] FastPath Double 6

VFMADDPS_128_reg FMA[P0 | P1] FastPath Single 6

VFMADDPS_256_reg FMA[P0 | P1] FastPath Double 6

VFMADDSD_128_reg FMA[P0 | P1] FastPath Single 6

VFMADDSS_128_reg FMA[P0 | P1] FastPath Single 6

VFMADDSUB132PD_128_reg FMA[P0 | P1] FastPath Single 6

VFMADDSUB132PD_256_reg FMA[P0 | P1] FastPath Double 6

VFMADDSUB132PS_128_reg FMA[P0 | P1] FastPath Single 6

VFMADDSUB132PS_256_reg FMA[P0 | P1] FastPath Double 6

VFMADDSUB213PD_128_reg FMA[P0 | P1] FastPath Single 6

VFMADDSUB213PD_256_reg FMA[P0 | P1] FastPath Double 6

VFMADDSUB213PS_128_reg FMA[P0 | P1] FastPath Single 6

VFMADDSUB213PS_256_reg FMA[P0 | P1] FastPath Double 6

VFMADDSUB231PD_128_reg FMA[P0 | P1] FastPath Single 6

VFMADDSUB231PD_256_reg FMA[P0 | P1] FastPath Double 6

VFMADDSUB231PS_128_reg FMA[P0 | P1] FastPath Single 6

VFMADDSUB231PS_256_reg FMA[P0 | P1] FastPath Double 6

VFMADDSUBPD_128_reg FMA[P0 | P1] FastPath Single 6

VFMADDSUBPD_256_reg FMA[P0 | P1] FastPath Double 6

VFMADDSUBPS_128_reg FMA[P0 | P1] FastPath Single 6

VFMADDSUBPS_256_reg FMA[P0 | P1] FastPath Double 6

VFMSUB132PD_128_reg FMA[P0 | P1] FastPath Single 6

VFMSUB132PD_256_reg FMA[P0 | P1] FastPath Double 6
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VFMSUB132PS_128_reg FMA[P0 | P1] FastPath Single 6

VFMSUB132PS_256_reg FMA[P0 | P1] FastPath Double 6

VFMSUB132SD_128_reg FMA[P0 | P1] FastPath Single 6

VFMSUB132SD_256_reg FMA[P0 | P1] FastPath Double 6

VFMSUB132SS_128_reg FMA[P0 | P1] FastPath Single 6

VFMSUB132SS_256_reg FMA[P0 | P1] FastPath Double 6

VFMSUB213PD_128_reg FMA[P0 | P1] FastPath Single 6

VFMSUB213PD_256_reg FMA[P0 | P1] FastPath Double 6

VFMSUB213PS_128_reg FMA[P0 | P1] FastPath Single 6

VFMSUB213PS_256_reg FMA[P0 | P1] FastPath Double 6

VFMSUB213SD_128_reg FMA[P0 | P1] FastPath Single 6

VFMSUB213SD_256_reg FMA[P0 | P1] FastPath Double 6

VFMSUB213SS_128_reg FMA[P0 | P1] FastPath Single 6

VFMSUB213SS_256_reg FMA[P0 | P1] FastPath Double 6

VFMSUB231PD_128_reg FMA[P0 | P1] FastPath Single 6

VFMSUB231PD_256_reg FMA[P0 | P1] FastPath Double 6

VFMSUB231PS_128_reg FMA[P0 | P1] FastPath Single 6

VFMSUB231PS_256_reg FMA[P0 | P1] FastPath Double 6

VFMSUB231SD_128_reg FMA[P0 | P1] FastPath Single 6

VFMSUB231SD_256_reg FMA[P0 | P1] FastPath Double 6

VFMSUB231SS_128_reg FMA[P0 | P1] FastPath Single 6

VFMSUB231SS_256_reg FMA[P0 | P1] FastPath Double 6

VFMSUBADD132PD_128_reg FMA[P0 | P1] FastPath Single 6

VFMSUBADD132PD_256_reg FMA[P0 | P1] FastPath Double 6

VFMSUBADD132PS_128_reg FMA[P0 | P1] FastPath Single 6

VFMSUBADD132PS_256_reg FMA[P0 | P1] FastPath Double 6

VFMSUBADD213PD_128_reg FMA[P0 | P1] FastPath Single 6

VFMSUBADD213PD_256_reg FMA[P0 | P1] FastPath Double 6

VFMSUBADD213PS_128_reg FMA[P0 | P1] FastPath Single 6

VFMSUBADD213PS_256_reg FMA[P0 | P1] FastPath Double 6

VFMSUBADD231PD_128_reg FMA[P0 | P1] FastPath Single 6

VFMSUBADD231PD_256_reg FMA[P0 | P1] FastPath Double 6

VFMSUBADD231PS_128_reg FMA[P0 | P1] FastPath Single 6

VFMSUBADD231PS_256_reg FMA[P0 | P1] FastPath Double 6
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VFMSUBADDPD_128_reg FMA[P0 | P1] FastPath Single 6

VFMSUBADDPD_256_reg FMA[P0 | P1] FastPath Double 6

VFMSUBADDPS_128_reg FMA[P0 | P1] FastPath Single 6

VFMSUBADDPS_256_reg FMA[P0 | P1] FastPath Double 6

VFMSUBPD_128_reg FMA[P0 | P1] FastPath Single 6

VFMSUBPD_256_reg FMA[P0 | P1] FastPath Double 6

VFMSUBPS_128_reg FMA[P0 | P1] FastPath Single 6

VFMSUBPS_256_reg FMA[P0 | P1] FastPath Double 6

VFMSUBSD_128_reg FMA[P0 | P1] FastPath Single 6

VFMSUBSS_128_reg FMA[P0 | P1] FastPath Single 6

VFNMADD132PD_128_reg FMA[P0 | P1] FastPath Single 6

VFNMADD132PD_256_reg FMA[P0 | P1] FastPath Double 6

VFNMADD132PS_128_reg FMA[P0 | P1] FastPath Single 6

VFNMADD132PS_256_reg FMA[P0 | P1] FastPath Double 6

VFNMADD132SD_128_reg FMA[P0 | P1] FastPath Single 6

VFNMADD132SD_256_reg FMA[P0 | P1] FastPath Double 6

VFNMADD132SS_128_reg FMA[P0 | P1] FastPath Single 6

VFNMADD132SS_256_reg FMA[P0 | P1] FastPath Double 6

VFNMADD213PD_128_reg FMA[P0 | P1] FastPath Single 6

VFNMADD213PD_256_reg FMA[P0 | P1] FastPath Double 6

VFNMADD213PS_128_reg FMA[P0 | P1] FastPath Single 6

VFNMADD213PS_256_reg FMA[P0 | P1] FastPath Double 6

VFNMADD213SD_128_reg FMA[P0 | P1] FastPath Single 6

VFNMADD213SD_256_reg FMA[P0 | P1] FastPath Double 6

VFNMADD213SS_128_reg FMA[P0 | P1] FastPath Single 6

VFNMADD213SS_256_reg FMA[P0 | P1] FastPath Double 6

VFNMADD231PD_128_reg FMA[P0 | P1] FastPath Single 6

VFNMADD231PD_256_reg FMA[P0 | P1] FastPath Double 6

VFNMADD231PS_128_reg FMA[P0 | P1] FastPath Single 6

VFNMADD231PS_256_reg FMA[P0 | P1] FastPath Double 6

VFNMADD231SD_128_reg FMA[P0 | P1] FastPath Single 6

VFNMADD231SD_256_reg FMA[P0 | P1] FastPath Double 6

VFNMADD231SS_128_reg FMA[P0 | P1] FastPath Single 6

VFNMADD231SS_256_reg FMA[P0 | P1] FastPath Double 6
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VFNMADDPD_128_reg FMA[P0 | P1] FastPath Single 6

VFNMADDPD_256_reg FMA[P0 | P1] FastPath Double 6

VFNMADDPS_128_reg FMA[P0 | P1] FastPath Single 6

VFNMADDPS_256_reg FMA[P0 | P1] FastPath Double 6

VFNMADDSD_128_reg FMA[P0 | P1] FastPath Single 6

VFNMADDSS_128_reg FMA[P0 | P1] FastPath Single 6

VFNMSUB132PD_128_reg FMA[P0 | P1] FastPath Single 6

VFNMSUB132PD_256_reg FMA[P0 | P1] FastPath Double 6

VFNMSUB132PS_128_reg FMA[P0 | P1] FastPath Single 6

VFNMSUB132PS_256_reg FMA[P0 | P1] FastPath Double 6

VFNMSUB132SD_128_reg FMA[P0 | P1] FastPath Single 6

VFNMSUB132SD_256_reg FMA[P0 | P1] FastPath Double 6

VFNMSUB132SS_128_reg FMA[P0 | P1] FastPath Single 6

VFNMSUB132SS_256_reg FMA[P0 | P1] FastPath Double 6

VFNMSUB213PD_128_reg FMA[P0 | P1] FastPath Single 6

VFNMSUB213PD_256_reg FMA[P0 | P1] FastPath Double 6

VFNMSUB213PS_128_reg FMA[P0 | P1] FastPath Single 6

VFNMSUB213PS_256_reg FMA[P0 | P1] FastPath Double 6

VFNMSUB213SD_128_reg FMA[P0 | P1] FastPath Single 6

VFNMSUB213SD_256_reg FMA[P0 | P1] FastPath Double 6

VFNMSUB213SS_128_reg FMA[P0 | P1] FastPath Single 6

VFNMSUB213SS_256_reg FMA[P0 | P1] FastPath Double 6

VFNMSUB231PD_128_reg FMA[P0 | P1] FastPath Single 6

VFNMSUB231PD_256_reg FMA[P0 | P1] FastPath Double 6

VFNMSUB231PS_128_reg FMA[P0 | P1] FastPath Single 6

VFNMSUB231PS_256_reg FMA[P0 | P1] FastPath Double 6

VFNMSUB231SD_128_reg FMA[P0 | P1] FastPath Single 6

VFNMSUB231SD_256_reg FMA[P0 | P1] FastPath Double 6

VFNMSUB231SS_128_reg FMA[P0 | P1] FastPath Single 6

VFNMSUB231SS_256_reg FMA[P0 | P1] FastPath Double 6

VFNMSUBPD_128_reg FMA[P0 | P1] FastPath Single 6

VFNMSUBPD_256_reg FMA[P0 | P1] FastPath Double 6

VFNMSUBPS_128_reg FMA[P0 | P1] FastPath Single 6

VFNMSUBPS_256_reg FMA[P0 | P1] FastPath Double 6
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VFNMSUBSD_128_reg FMA[P0 | P1] FastPath Single 6

VFNMSUBSS_128_reg FMA[P0 | P1] FastPath Single 6

VFRCZPD_128_reg CVT[P0]/FMA[P0 | P1] FastPath Double 4/6

VFRCZPD_256_reg microcode microcode 9

VFRCZPS_128_reg CVT[P0]/FMA[P0 | P1] FastPath Double 4/6

VFRCZPS_256_reg microcode microcode 9

VFRCZSD_128_reg CVT[P0]/FMA[P0 | P1] FastPath Double 4/6

VFRCZSS_128_reg CVT[P0]/FMA[P0 | P1] FastPath Double 4/6

VHADDPD_128_reg microcode microcode 11

VHADDPD_256_reg microcode microcode 11

VHADDPS_128_reg microcode microcode 11

VHADDPS_256_reg microcode microcode 11

VHSUBPD_128_reg microcode microcode 11

VHSUBPD_256_reg microcode microcode 11

VHSUBPS_128_reg microcode microcode 11

VHSUBPS_256_reg microcode microcode 11

VINSERTF128_256_reg MAL[P2 | P3] FastPath Double 3

VINSERTPS_128_reg XBR[P1] FastPath Single 2

VLDDQU_128_mem None FastPath Single 4

VLDDQU_256_mem None FastPath Double 4

VLDMXCSR_128_mem microcode microcode NA

VMASKMOVDQU_128_reg microcode microcode NA

VMASKMOVPD_128_mem FMA[P0 | P1] FastPath Single 2

VMASKMOVPD_256_mem FMA[P0 | P1] FastPath Double 3

VMASKMOVPS_128_mem FMA[P0 | P1] FastPath Single 2

VMASKMOVPS_256_mem FMA[P0 | P1] FastPath Double 3

VMAXPD_128_reg FMA[P0 | P1] FastPath Single 2

VMAXPD_256_reg FMA[P0 | P1] FastPath Double 2

VMAXPS_128_reg FMA[P0 | P1] FastPath Single 2

VMAXPS_256_reg FMA[P0 | P1] FastPath Double 2

VMAXSD_128_reg FMA[P0 | P1] FastPath Single 2

VMAXSS_128_reg FMA[P0 | P1] FastPath Single 2

VMINPD_128_reg FMA[P0 | P1] FastPath Single 2

VMINPD_256_reg FMA[P0 | P1] FastPath Double 2
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VMINPS_128_reg FMA[P0 | P1] FastPath Single 2

VMINPS_256_reg FMA[P0 | P1] FastPath Double 2

VMINSD_128_reg FMA[P0 | P1] FastPath Single 2

VMINSS_128_reg FMA[P0 | P1] FastPath Single 2

VMOVAPD_128_reg MAL[P2 | P3] FastPath Single 0

VMOVAPD_256_reg MAL[P2 | P3] FastPath Double 0

VMOVAPS_128_reg MAL[P2 | P3] FastPath Single 0

VMOVAPS_256_reg MAL[P2 | P3] FastPath Double 0

VMOVD_128_reg32_xmm STO[P3] FastPath Single 2

VMOVD_128_xmm_reg32 None FastPath Double 8

VMOVDDUP_128_reg XBR[P1] FastPath Single 2

VMOVDDUP_256_reg XBR[P1] FastPath Double 2

VMOVDQA_128_reg MAL[P2 | P3] FastPath Single 2

VMOVDQA_256_reg MAL[P2 | P3] FastPath Double 2

VMOVDQU_128_reg MAL[P2 | P3] FastPath Single 2

VMOVDQU_256_reg MAL[P2 | P3] FastPath Double 2

VMOVHLPS_128_reg XBR[P1] FastPath Single 2

VMOVHPD_128_mem_reg XBR[P1] FastPath Double 4

VMOVHPD_128_reg_mem XBR[P1] FastPath Single 4

VMOVHPS_128_mem_reg XBR[P1] FastPath Double 4

VMOVHPS_128_reg_mem XBR[P1] FastPath Single 4

VMOVLHPS_128_reg XBR[P1] FastPath Single 2

VMOVLPD_128_mem FMA[P0 | P1] FastPath Single 4

VMOVLPS_128_mem FMA[P0 | P1] FastPath Single 4

VMOVMSKPD_128_reg XBR[P1]/STO[P3] FastPath Double 2/4

VMOVMSKPD_256_reg XBR[P1]/STO[P3] FastPath Double 2/4

VMOVMSKPS_128_reg XBR[P1]/STO[P3] FastPath Double 2/4

VMOVMSKPS_256_reg XBR[P1]/STO[P3] FastPath Double 2/4

VMOVNTDQ_128_mem STO[P3] FastPath Single 4

VMOVNTDQA_128_mem STO[P3] FastPath Single 4

VMOVNTPD_128_mem STO[P3] FastPath Single 4

VMOVNTPS_128_mem STO[P3] FastPath Single 4

VMOVQ_128_reg64_xmm MAL[P2 | P3] FastPath Single 2

VMOVQ_128_xmm_reg64 MAL[P2 | P3] FastPath Single 2
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VMOVSD_128_reg FMA[P0 | P1] FastPath Single 2

VMOVSHDUP_128_reg XBR[P1] FastPath Single 2

VMOVSHDUP_256_reg XBR[P1] FastPath Double 2

VMOVSLDUP_128_reg XBR[P1] FastPath Single 2

VMOVSLDUP_256_reg XBR[P1] FastPath Double 2

VMOVSS_128_reg FMA[P0 | P1] FastPath Single 2

VMOVUPD_128_reg MAL[P2 | P3] FastPath Single 0

VMOVUPD_256_reg MAL[P2 | P3] FastPath Double 0

VMOVUPS_128_reg MAL[P2 | P3] FastPath Single 0

VMOVUPS_256_reg MAL[P2 | P3 FastPath Double 0

VMPSADBW_128_reg microcode microcode 4

VMULPD_128_reg FMA[P0 | P1] FastPath Single 6

VMULPD_256_reg FMA[P0 | P1] FastPath Double 6

VMULPS_128_reg FMA[P0 | P1] FastPath Single 6

VMULPS_256_reg FMA[P0 | P1] FastPath Double 6

VMULSD_128_reg FMA[P0 | P1] FastPath Single 6

VMULSS_128_reg FMA[P0 | P1] FastPath Single 6

VORPD_128_reg MAL[P2 | P3] FastPath Single 2

VORPD_256_reg MAL[P2 | P3] FastPath Double 2

VORPS_128_reg MAL[P2 | P3] FastPath Single 2

VORPS_256_reg MAL[P2 | P3] FastPath Double 2

VPABSB_128_reg MAL[P2 | P3] FastPath Single 2

VPABSD_128_reg MAL[P2 | P3] FastPath Single 2

VPABSW_128_reg MAL[P2 | P3] FastPath Single 2

VPACKSSDW_128_reg XBR[P1] FastPath Single 2

VPACKSSWB_128_reg XBR[P1] FastPath Single 2

VPACKUSDW_128_reg XBR[P1] FastPath Single 2

VPACKUSWB_128_reg XBR[P1] FastPath Single 2

VPADDB_128_reg MAL[P2 | P3] FastPath Single 2

VPADDD_128_reg MAL[P2 | P3] FastPath Single 2

VPADDQ_128_reg MAL[P2 | P3] FastPath Single 2

VPADDSB_128_reg MAL[P2 | P3] FastPath Single 2

VPADDSW_128_reg MAL[P2 | P3] FastPath Single 2

VPADDUSB_128_reg MAL[P2 | P3] FastPath Single 2
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VPADDUSW_128_reg MAL[P2 | P3] FastPath Single 2

VPADDW_128_reg MAL[P2 | P3] FastPath Single 2

VPALIGNR_128_reg XBR[P1] FastPath Single 2

VPAND_128_reg MAL[P2 | P3] FastPath Single 2

VPANDN_128_reg MAL[P2 | P3] FastPath Single 2

VPAVGB_128_reg MAL[P2 | P3] FastPath Single 2

VPAVGW_128_reg MAL[P2 | P3] FastPath Single 2

VPBLENDVB_128_reg XBR[P1] FastPath Single 2

VPBLENDW_128_reg MAL[P2 | P3] FastPath Single 2

VPCLMULQDQ_128_reg microcode microcode 12

VPCMOV_128_reg XBR[P1] FastPath Single 2

VPCMOV_256_reg XBR[P1] FastPath Double 2

VPCMPEQB_128_reg MAL[P2 | P3] FastPath Single 2

VPCMPEQD_128_reg MAL[P2 | P3] FastPath Single 2

VPCMPEQQ_128_reg MAL[P2 | P3] FastPath Single 2

VPCMPEQW_128_reg MAL[P2 | P3] FastPath Single 2

VPCMPESTRI_128_reg microcode microcode 30

VPCMPESTRM_128_reg microcode microcode NA

VPCMPGTB_128_reg MAL[P2 | P3] FastPath Single 2

VPCMPGTD_128_reg MAL[P2 | P3] FastPath Single 2

VPCMPGTQ_128_reg MAL[P2 | P3] FastPath Single 2

VPCMPGTW_128_reg MAL[P2 | P3] FastPath Single 2

VPCMPISTRI_128_xmm microcode microcode 10

VPCMPISTRM_128_xmm microcode microcode NA

VPCOMB_128_reg MAL[P2 | P3] FastPath Single 2

VPCOMD_128_reg MAL[P2 | P3] FastPath Single 2

VPCOMQ_128_reg MAL[P2 | P3] FastPath Single 2

VPCOMUB_128_reg MAL[P2 | P3] FastPath Single 2

VPCOMUD_128_reg MAL[P2 | P3] FastPath Single 2

VPCOMUQ_128_reg MAL[P2 | P3] FastPath Single 2

VPCOMUW_128_reg MAL[P2 | P3] FastPath Single 2

VPCOMW_128_reg MAL[P2 | P3] FastPath Single 2

VPERM2F128_256_reg microcode microcode 5

VPERMIL2PD_128_reg XBR[P1] FastPath Single 3
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VPERMIL2PD_256_reg XBR[P1] FastPath Double 3

VPERMIL2PS_128_reg XBR[P1] FastPath Single 3

VPERMIL2PS_256_reg XBR[P1] FastPath Double 3

VPERMILPD_128_reg XBR[P1] FastPath Single 3

VPERMILPD_256_reg XBR[P1] FastPath Double 3

VPERMILPS_128_reg XBR[P1] FastPath Single 3

VPERMILPS_256_reg XBR[P1] FastPath Double 3

VPEXTRB_128_reg XBR[P1]/STO[P3] FastPath Double 2/2

VPEXTRD_128_xmm_reg64 XBR[P1]/STO[P3] FastPath Double 2/2

VPEXTRQ_128_xmm_reg64 XBR[P1]/STO[P3] FastPath Double 2/2

VPEXTRW_128_reg XBR[P1]/STO[P3] FastPath Double 2/2

VPHADDBD_128_reg MAL[P2 | P3] FastPath Single 2

VPHADDBQ_128_reg MAL[P2 | P3] FastPath Single 2

VPHADDBW_128_reg MAL[P2 | P3] FastPath Single 2

VPHADDD_128_reg microcode microcode 5

VPHADDDQ_128_reg MAL[P2 | P3] FastPath Single 2

VPHADDSW_128_reg microcode microcode 5

VPHADDUBD_128_reg MAL[P2 | P3] FastPath Single 2

VPHADDUBQ_128_reg MAL[P2 | P3] FastPath Single 2

VPHADDUBW_128_reg MAL[P2 | P3] FastPath Single 2

VPHADDUDQ_128_reg MAL[P2 | P3] FastPath Single 2

VPHADDUWD_128_reg MAL[P2 | P3] FastPath Single 2

VPHADDUWQ_128_reg MAL[P2 | P3] FastPath Single 2

VPHADDW_128_reg microcode microcode 5

VPHADDWD_128_reg MAL[P2 | P3] FastPath Single 2

VPHADDWQ_128_reg MAL[P2 | P3] FastPath Single 2

VPHMINPOSUW_128_reg MAL[P2 | P3]/XBR[P1] FastPath Double 2/2

VPHSUBBW_128_reg MAL[P2 | P3] FastPath Single 2

VPHSUBD_128_reg microcode microcode 5

VPHSUBDQ_128_reg MAL[P2 | P3] FastPath Single 2

VPHSUBSW_128_reg microcode microcode 5

VPHSUBW_128_reg microcode microcode 5

VPHSUBWD_128_reg MAL[P2 | P3] FastPath Single 2

VPINSRB_128_reg XBR[P1] FastPath Single 2

Table 13: FPU Instruction Latencies (Continued)
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VPINSRD_128_reg32_xmm XBR[P1] FastPath Single 2

VPINSRQ_128_reg64_xmm XBR[P1] FastPath Single 2

VPINSRW_128_reg XBR[P1] FastPath Double 2

VPMACSDD_128_reg MMA[P0] FastPath Single 5

VPMACSDQH_128_reg MMA[P0] FastPath Single 4

VPMACSDQL_128_reg MMA[P0] FastPath Single 4

VPMACSSDD_128_reg MMA[P0] FastPath Single 5

VPMACSSDQH_128_reg MMA[P0] FastPath Single 4

VPMACSSDQL_128_reg MMA[P0] FastPath Single 4

VPMACSSWD_128_reg MMA[P0] FastPath Single 4

VPMACSSWW_128_reg MMA[P0] FastPath Single 4

VPMACSWD_128_reg MMA[P0] FastPath Single 4

VPMACSWW_128_reg MMA[P0] FastPath Single 4

VPMADCSSWD_128_reg MMA[P0] FastPath Single 4

VPMADCSWD_128_reg MMA[P0] FastPath Single 4

VPMADDUBSW_128_reg MMA[P0] FastPath Single 4

VPMADDWD_128_reg MMA[P0] FastPath Single 4

VPMAXSB_128_reg MAL[P2 | P3] FastPath Single 2

VPMAXSD_128_reg MAL[P2 | P3] FastPath Single 2

VPMAXSW_128_reg MAL[P2 | P3] FastPath Single 2

VPMAXUB_128_reg MAL[P2 | P3] FastPath Single 2

VPMAXUD_128_reg MAL[P2 | P3] FastPath Single 2

VPMAXUW_128_reg MAL[P2 | P3] FastPath Single 2

VPMINSB_128_reg MAL[P2 | P3] FastPath Single 2

VPMINSD_128_reg MAL[P2 | P3] FastPath Single 2

VPMINSW_128_reg MAL[P2 | P3] FastPath Single 2

VPMINUB_128_reg MAL[P2 | P3] FastPath Single 2

VPMINUD_128_reg MAL[P2 | P3] FastPath Single 2

VPMINUW_128_reg MAL[P2 | P3] FastPath Single 2

VPMOVMSKB_128_reg XBR[P1]/STO[P3] FastPath Double 2/2

VPMOVSXBD_128_reg XBR[P1] FastPath Single 2

VPMOVSXBQ_128_reg XBR[P1] FastPath Single 2

VPMOVSXBW_128_reg XBR[P1] FastPath Single 2

VPMOVSXDQ_128_reg XBR[P1] FastPath Single 2
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VPMOVSXWD_128_reg XBR[P1] FastPath Single 2

VPMOVSXWQ_128_reg XBR[P1] FastPath Single 2

VPMOVZXBD_128_reg XBR[P1] FastPath Single 2

VPMOVZXBQ_128_reg XBR[P1] FastPath Single 2

VPMOVZXBW_128_reg XBR[P1] FastPath Single 2

VPMOVZXDQ_128_reg XBR[P1] FastPath Single 2

VPMOVZXWD_128_reg XBR[P1] FastPath Single 2

VPMOVZXWQ_128_reg XBR[P1] FastPath Single 2

VPMULDQ_128_reg MMA[P0] FastPath Single 4

VPMULHRSW_128_reg MMA[P0] FastPath Single 4

VPMULHUW_128_reg MMA[P0] FastPath Single 4

VPMULHW_128_reg MMA[P0] FastPath Single 4

VPMULLD_128_reg MMA[P0] FastPath Single 5

VPMULLW_128_reg MMA[P0] FastPath Single 4

VPMULUDQ_128_reg MMA[P0] FastPath Single 4

VPOR_128_reg MAL[P2 | P3] FastPath Single 2

VPPERM_128_reg XBR[P1] FastPath Single 2

VPROTB_128_reg XBR[P1] FastPath Single 2

VPROTD_128_reg XBR[P1] FastPath Single 2

VPROTQ_128_reg XBR[P1] FastPath Single 2

VPROTW_128_reg XBR[P1] FastPath Single 2

VPSADBW_128_reg MAL[P2 | P3] FastPath Double 2

VPSHAB_128_reg XBR[P1] FastPath Single 3

VPSHAD_128_reg XBR[P1] FastPath Single 3

VPSHAQ_128_reg XBR[P1] FastPath Single 3

VPSHAW_128_reg XBR[P1] FastPath Single 3

VPSHLB_128_reg XBR[P1] FastPath Single 3

VPSHLD_128_reg XBR[P1] FastPath Single 3

VPSHLQ_128_reg XBR[P1] FastPath Single 3

VPSHLW_128_reg XBR[P1] FastPath Single 3

VPSHUFB_128_reg XBR[P1] FastPath Single 3

VPSHUFD_128_reg XBR[P1] FastPath Single 2

VPSHUFHW_128_reg XBR[P1] FastPath Single 2

VPSHUFLW_128_reg XBR[P1] FastPath Single 2
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VPSIGNB_128_reg MAL[P2 | P3] FastPath Single 2

VPSIGND_128_reg MAL[P2 | P3] FastPath Single 2

VPSIGNW_128_reg MAL[P2 | P3] FastPath Single 2

VPSLLD_128_reg XBR[P1] FastPath Single 3

VPSLLDQ_128_reg XBR[P1] FastPath Single 2

VPSLLQ_128_reg XBR[P1] FastPath Single 3

VPSLLW_128_reg XBR[P1] FastPath Single 3

VPSRAD_128_reg XBR[P1] FastPath Single 3

VPSRAW_128_reg XBR[P1] FastPath Single 3

VPSRLD_128_reg XBR[P1] FastPath Single 3

VPSRLDQ_128_reg XBR[P1] FastPath Single 2

VPSRLQ_128_reg XBR[P1] FastPath Single 3

VPSRLW_128_reg XBR[P1] FastPath Single 3

VPSUBB_128_reg MAL[P2 | P3] FastPath Single 2

VPSUBD_128_reg MAL[P2 | P3] FastPath Single 2

VPSUBQ_128_reg MAL[P2 | P3] FastPath Single 2

VPSUBSB_128_reg MAL[P2 | P3] FastPath Single 2

VPSUBSW_128_reg MAL[P2 | P3] FastPath Single 2

VPSUBUSB_128_reg MAL[P2 | P3] FastPath Single 2

VPSUBUSW_128_reg MAL[P2 | P3] FastPath Single 2

VPSUBW_128_reg MAL[P2 | P3] FastPath Single 2

VPTEST_128_reg XBR[P1]/STO[P3] FastPath Double 2/2

VPTEST_256_reg microcode microcode 9

VPUNPCKHBW_128_reg XBR[P1] FastPath Single 2

VPUNPCKHDQ_128_reg XBR[P1] FastPath Single 2

VPUNPCKHQDQ_128_reg XBR[P1] FastPath Single 2

VPUNPCKHWD_128_reg XBR[P1] FastPath Single 2

VPUNPCKLBW_128_reg XBR[P1] FastPath Single 2

VPUNPCKLDQ_128_reg XBR[P1] FastPath Single 2

VPUNPCKLQDQ_128_reg XBR[P1] FastPath Single 2

VPUNPCKLWD_128_reg XBR[P1] FastPath Single 2

VPXOR_128_reg MAL[P2 | P3] FastPath Single 2

VRCPPS_128_reg FMA[P0 | P1] FastPath Single 6

VRCPPS_256_reg FMA[P0 | P1] FastPath Double 6
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VRCPSS_128_reg FMA[P0 | P1] FastPath Single 6

VROUNDPD_128_reg CVT[P0] FastPath Single 4

VROUNDPD_256_reg CVT[P0] FastPath Double 4

VROUNDPS_128_reg CVT[P0] FastPath Single 4

VROUNDPS_256_reg CVT[P0] FastPath Double 4

VROUNDSD_128_reg CVT[P0] FastPath Single 4

VROUNDSS_128_reg CVT[P0] FastPath Single 4

VRSQRTPS_128_reg FMA[P0 | P1] FastPath Single 6

VRSQRTPS_256_reg FMA[P0 | P1] FastPath Double 6

VRSQRTSS_128_reg FMA[P0 | P1] FastPath Single 6

VSHUFPD_128_reg XBR[P1] FastPath Single 2

VSHUFPD_256_reg XBR[P1] FastPath Double 2

VSHUFPS_128_reg XBR[P1] FastPath Single 2

VSHUFPS_256_reg XBR[P1] FastPath Double 2

VSQRTPD_128_reg FMA[P0 | P1] FastPath Single 38

VSQRTPD_256_reg FMA[P0 | P1] FastPath Double 38

VSQRTPS_128_reg FMA[P0 | P1] FastPath Single 29

VSQRTPS_256_reg FMA[P0 | P1] FastPath Double 29

VSQRTSD_128_reg FMA[P0 | P1] FastPath Single 38

VSQRTSS_128_reg FMA[P0 | P1] FastPath Single 29

VSTMXCSR_128_mem microcode microcode NA

VSUBPD_128_reg FMA[P0 | P1] FastPath Single 6

VSUBPD_256_reg FMA[P0 | P1] FastPath Double 6

VSUBPS_128_reg FMA[P0 | P1] FastPath Single 6

VSUBPS_256_reg FMA[P0 | P1] FastPath Double 6

VSUBSD_128_reg FMA[P0 | P1] FastPath Single 6

VSUBSS_128_reg FMA[P0 | P1] FastPath Single 6

VTESTPD_128_reg XBR[P1]/STO[P3] FastPath Double 2/2

VTESTPD_256_reg microcode microcode 9

VTESTPS_128_reg XBR[P1]/STO[P3] FastPath Double 2/2

VTESTPS_256_reg microcode microcode 9

VUCOMISD_128_reg FMA[P0 | P1]/STO[P3] FastPath Double 2/2

VUCOMISS_128_reg FMA[P0 | P1]/STO[P3] FastPath Double 2/2

VUNPCKHPD_128_reg XBR[P1] FastPath Single 2
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VUNPCKHPD_256_reg XBR[P1] FastPath Double 2

VUNPCKHPS_128_reg XBR[P1] FastPath Single 2

VUNPCKHPS_256_reg XBR[P1] FastPath Double 2

VUNPCKLPD_128_reg XBR[P1] FastPath Single 2

VUNPCKLPD_256_reg XBR[P1] FastPath Double 2

VUNPCKLPS_128_reg XBR[P1] FastPath Single 2

VUNPCKLPS_256_reg XBR[P1] FastPath Double 2

VXORPD_128_reg MAL[P2 | P3] FastPath Single 2

VXORPD_256_reg MAL[P2 | P3] FastPath Double 2

VXORPS_128_reg MAL[P2 | P3] FastPath Single 2

VXORPS_256_reg MAL[P2 | P3] FastPath Double 2

XORPD_reg MAL[P2 | P3] FastPath Single 2

XORPS_reg MAL[P2 | P3] FastPath Single 2

Table 13: FPU Instruction Latencies (Continued)

Instruction Pipes Decode Type Latencies



314 Instruction Latencies Appendix B

47414 Rev. 3.06 January 2012Software Optimization Guide for AMD Family 15h Processors

B.5 Amended Latency for Selected Instructions
The following sections provide latency adjustments for selected instructions for processor models 
00h–0Fh and for processor models 10h-2Fh.

Processor Models 00h–0Fh
Table 14 below describes the cycle penalties that occur when data passes from one type of pipe-
mapped instruction to another type of pipe-mapped instruction.

Notes: 

1. A cell value of -1 means that both instructions have special bypass mode applied. This is the 
difference between a 5 cycle and 6 cycle FMA instruction. 

2. FMA-2c examples are compare, min, max and others (see pipe mappings for FMA in Table 12).

3. Although the floating-point scheduler can emit one 256-bit instruction per cycle, if that 
instruction has a conflict with a 128-bit instruction via pipe mapping, a cycle delay will be seen 
for the 256-bit instruction.

Table 14. Unit Bypass Latencies

from\to STO MAL XBR MMA CVT FMA-2c FMA-5c FMA-6c

MAL 0 0 0 1 1 1 1 1

XBR 0 0 0 1 1 1 1 1

MMA 1 1 1 0 1 1 1 1

CVT 1 1 1 1 0 0 0 0

FMA-2c 1 1 1 1 0 0 0 0

FMA-5c 1 1 1 1 0 0 0 0

FMA-6c 1 1 1 1 0 0 0 -1
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Processor Models 10h–2Fh
Table 15 below describes the cycle penalties that occur when data passes from one type of pipe- 
mapped instruction to another type of pipe-mapped instruction.

Notes: 

1. A cell value of -1 means that both instructions have special bypass mode applied. This is the 
difference between a 5 cycle and 6 cycle FMA instruction. 

2. FMA-2c examples are compare, min, max and others (see pipe mappings for FMA in Table 12).

3. Although the floating-point scheduler can emit one 256-bit instruction per cycle, if that 
instruction has a conflict with a 128-bit instruction via pipe mapping, a cycle delay will be seen 
for the 256-bit instruction.

Table 15. Unit Bypass Latencies

from\to STO MAL XBR MMA CVT FMA-2c FMA-5c FMA-6c

MAL 0 0 0 1 1 1 1 1

XBR 0 0 0 1 1 1 1 1

MMA 1 1 1 0 1 1 1 1

CVT 0 1 1 1 0 0 0 0

FMA-2c 0 1 1 1 0 0 0 0

FMA-5c 0 1 1 1 0 0 0 0

FMA-6c 0 1 1 1 0 0 0 -1
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Appendix C Tools and APIs for 
AMD Family 15h ccNUMA 
Multiprocessor Systems

The following sections discuss tools and APIs available to support AMD Family 15h ccNUMA 
multiprocessor systems.

C.1 Thread/Process Scheduling, Memory Affinity
This following sections discuss tools and APIs available for assigning thread/process and memory 
affinity under various operating systems.

C.1.1 Support Under Linux®

Linux provides command-line utilities to explicitly set process/thread and memory affinity to both 
nodes and cores on a node. Additionally, libnuma, a shared library, is provided for more precise 
affinity control from within applications.

C.1.1.1 Controlling Process and Thread Affinity

The Linux command-line utlities offer high-level affinity control options. The numactl utility is a 
command line tool for running a process with a specific node affinity.

For example, to run the foobar program on the cores of node 0, enter the following at the command 
prompt: 
numactl --cpunodebind=0  foobar

Application and kernel developers can use the libnuma shared library, which can be linked to 
programs and offers a stable API for setting thread affinity to a given node or set of nodes. Interested 
developers should consult the Linux man pages for details on the various functions available.

On a multicore processor, a process or thread affined to a particular node using the tools or API 
discussed above may still migrate back and forth between the cores of that node. This migration may 
or may not affect performance.

The taskset utility is a command-line tool for setting the process affinity for a specified program to 
any core. For example, to run the foobar program on the first two cores of node 0, enter the following 
on the command line: 
taskset -c 0,1  foobar

In SuSE Linux Enterprise Server 10/10.1, the numactl utility can be used instead of taskset to set 
process affinity to any core. To repeat the previous example using numactl:
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numactl --physcpubind=0,1 foobar

Linux provides several functions by which to set the thread affinity to any core or set of cores:

• pthread_attr_setaffinity_np( ) and pthread_create( ) are provided as a part of the older nptl 
library; they can be used to set the affinity parameter and then create a thread using that affinity.

• sched_setaffinity( ) system call and schedutils scheduler utilities.

In“Scheduling Single and Multithreaded Applications on Multiprocessor Systems” on page 193, we 
recommend scheduling multi-threaded applications in which each thread operates on independent 
data with one thread per node if possible.  For example, if a program create four threads and runs on a 
4-node system, the numactl command line preface for this program might be
numactl --cpunodebind=0,1,2,3 <program>

However, this command preface does not restrict any movement of threads to any core in the system, 
and thus does not achieve the desired affect.  Using the --physcpubind option to restrict threads to 
specfiic cores would possibly yield
numactl --physcpubind=0, 8, 16, 24

Assuming four compute units or eight cores per node in this example, this would limit progam 
execution to only the first core on each of four nodes.  However, we are left with the possibility that 
any of the four threads could migrate between these four cores, possibly causing remote memory 
accesses and lower performance.  Thus, for this scenario, it is better for each thread to set its own 
affinity mask, using, for example, sched_setaffinity() and specifying a single core.

C.1.1.2 Controlling Memory Affinity

Both numactl and libnuma library functions can be used to set memory affinity[5]. Memory affinity 
set by tools like numactl applies to all the data accessed by the entire program (including child 
processes). Memory affinity set by libnuma or other library functions can be made to apply only to 
specific data as determined by the program.

Both numactl and the libnuma API can be used to set a preferred memory affinity instead of forcibly 
binding it. In this case the binding specified is a hint to the OS; the OS may choose not to adhere to it.

At a high level, normal first touch binding, explicit binding and preferred binding are all available as 
memory policies on Linux.

By default, when none of the tools/API is used, Linux uses the first touch binding policy for all data. 
Once memory is bound, either by the OS, or by using the tools/API, the memory will normally remain 
resident on that node for its lifetime.

C.1.2 Support under Microsoft® Windows®

In the Microsoft Windows environment, the function to bind a thread on particular core or cores is 
SetThreadAffinityMask( ). The function to run all threads in a process on particular core or cores is 
SetProcessAffinityMask( )[8]. 

http://www.novell.com/collateral/4621437/4621437.pdf
http://www.novell.com/collateral/4621437/4621437.pdf
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dllproc/base/multiple_processors.asp
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The function to set memory affinity for a thread is VirtualAllocEx( )[9]. This function gives the 
developer the choice to bind memory immediately on allocation or to defer binding until first touch. 

The start /affinity xxx command can be used to confine all of a process's threads to a specified 
subset of cores in the system.  The memory that these threads allocate or touch will also be confined 
to that subset of cores. In addition, several Microsoft Enterprise products provide NUMA support and 
configurability, such as SQL Server 2008 [10] and IIS [11].

If an application relies on heaps in Windows, we recommend using a low fragmentation heap (LFH) 
and using a local heap instead of a global heap[12][13]. 

By default, Windows uses the first touch binding policy for all data. Once memory is bound to a node, 
it normally resides on that node for its lifetime.

C.1.3 Hardware Support for System Topology Discovery
AMD Family 15h processors support new hardware features to facilitate the discovery of hardware 
topology and configuration about the possible implementation choices of cache size, number of 
compute units per node sharing an L3 cache, nodes per processor package, etc.  In some cases, 
software may require more detailed knowledge of these characteristics than that provided by the APIs 
mentioned above.  This information can help software implement the optimizations described in 
Chapter 11.

This information can be accessed by use of the CPUID functions 8000_001D and 8000_001E, as 
described in the BIOS and Kernel Developer’s Guide (BKDG) for AMD Family 15h Processors, 
order# 42301 and CPUID Specification, #25481.

C.1.4 Support for Stability
There may be instances of software runtime execution which cannot tolerate the variability aspects of 
Application Power Management (APM) boost support. For example, when configuring a workload 
which makes a APIC reservation request, it may be undesirable to possibly allow the processor to 
deliver variable performance that cannot be sustained. To disable Application Power Management 
boost support do the following:

• For CPUID 8000_0007 detect that APM boost is enabled

• APM is enabled if all of the following conditions are true:

▪ MSRC001_0015[CpbDis] = = 0 for all cores.

▪ D18F4x15C[ApmMasterEn] = = 1.

▪ D18F4x15C[BoostSrc] = = 1.

▪ D18F4x15C[NumBoostStates] != 0.

Change the ApmMasterEn by setting bit 7 to 0 which will disable power management.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/memory/base/virtualalloc.asp
http://msdn2.microsoft.com/en-us/library/ms186255(SQL.90).aspx
http://msdn2.microsoft.com/en-us/library/ms186255(SQL.90).aspx
http://msdn2.microsoft.com/en-us/library/ms186255(SQL.90).aspx
http://www.microsoft.com/technet/prodtechnol/WindowsServer2003/Library/IIS/529588d3-71bc-45ea-a84b-267914674709.mspx
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dngenlib/html/msdn_heapmm.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dngenlib/html/msdn_heapmm.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/memory/base/low_fragmentation_heap.asp
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C.1.5 FPU Scheduling using the Topology Extensions
Using this new feature on AMD hardware for Family 15h, software can detect the assignable APIC 
IDs needed for unshared FPU compute unit utilization. This allows software to determine the layout 
of the topology by revealing which compute unit a given core is on. Processes can then be scheduled 
to avoid cores which share the Floating Point Unit resources which are already bound and described 
within the same compute unit id. An example in C and assembler is shown below which utilizes this 
new feature to that end:

extern void my_cpuid(int filter, int *, int *, int *, int *);

/* This detects system CPU topology */
void show_lowest_cu_apic(void)
{
  int eax, ebx, ecx, edx;
  int cores_per_cu = 0;
  int num_phy_cores = 0;
  int apic_id = 0;
  int init_apic_id = 0;
  int apic_id_core_id_size = 0;
  int mnc;
  int starting_apic_id = 0;
  int i, j;

  /* Use topology extensions */
  my_cpuid(0x8000001e, &eax, &ebx, &ecx, &edx);

  apic_id = eax;
  compute_unit_id = ebx & 0xFF;
  phys_proc_id = ecx & 0xFF;

  printf("first apic_id = %d\n", apic_id);

  cores_per_cu = ((ebx >> 8) & 0x3) + 1;

  printf("cpu_core_id = %d, phys_proc_id = %d\n",
         compute_unit_id, phys_proc_id);
  printf("number of siblings in this compute unit = %d\n", cores_per_cu);

  /* get APIC ID and Core Count */
  my_cpuid(0x80000008, &eax, &ebx, &ecx, &edx);

  num_phy_cores = (ecx & 0x7F) + 1;
  apic_id_core_id_size = (ecx >> 12) & 0xF;

  printf("number of cores for this socket = %d\n", num_phy_cores);
  printf("number of compute units = %d\n", num_phy_cores / cores_per_cu);
  printf("APIC ID size = %d\n", apic_id_core_id_size);

  /* get LocalApicId */
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  my_cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
  init_apic_id = (ebx >> 24) & 0xFF;

  printf("the initial apic id = %d\n" , init_apic_id);

  mnc = 1;
  for (i = 0; i < apic_id_core_id_size; i++)
    mnc *= 2;

  printf("max number of supported cores = %d\n", mnc);

  /* configure number of procs for apic assignment */
  phys_proc_id = (phys_proc_id == 0) ? 1 : phys_proc_id;

  /*
   *Follow ApicID Enumeration: ApicId[proc=i,core=j] = (OFFSET_IDX + i) * mnc + j;
*/

  printf("assignable apics per cu\n");
  for (i = 0; i < phys_proc_id; i++) {
    starting_apic_id = (apic_id - init_apic_id) * (i + 1);
    for (j = 0; j < num_phy_cores;
         j += cores_per_cu, starting_apic_id += cores_per_cu) {
      printf("ApicId[proc=%d,core_id=%d] = %d\n", i, j, starting_apic_id);
    }
  }
}

Where the cpuid function in assembler looks like this:
my_cpuid:       # 0x0
#
#  void my_cpuid(int filter, int* eax, int *ebx, int *ecx, int *edx)
#
.LBB1_my_cpuid:
        pushq   %r10
        movq    %rcx,%r9
        movq    %rdx,%r10
        movq    %rdi,%rax
        cpuid
        movl    %eax,(%rsi)
        movl    %ebx,(%r10)
        movl    %ecx,(%r9)
        movl    %edx,(%r8)
        popq    %r10
        retq 
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C.2 Tools and APIs for Memory Node Interleaving
This section discusses tools and APIs available for performing node interleaving under various 
operating systems.

C.2.1 Support under Linux®

Linux provides several ways for an application to use memory node interleaving [5].

• numactl is a command line tool, which is used for node interleaving all memory accessed by a 
program across a set of chosen nodes.

For example, to interleave all memory accessed by program foobar on nodes 0 and 1, use: 

numactl --interleave=0x03  foobar

• libnuma offers several functions a program can use to interleave a given memory region across a 
set of chosen nodes.

Linux only supports the round robin node interleaving policy.

C.2.2 Support under Solaris™
Solaris offers an API called madvise, which can be usedwith the MADV_ACCESS_MANY flag to 
tell the OS to use a memory policy that causes the OS to bind memory randomly across the nodes. 
This offers behavior similar to the round robin node interleaving of memory offered by Linux. 

This random policy is the default memory placement policy used by Solaris for shared memory.

C.2.3 Support under Microsoft® Windows®

Microsoft Windows does not offer node interleaving.

C.2.4 Memory Node Interleaving Configuration in the BIOS
AMD family 15h ccNUMA multiprocessor systems can be configured in the BIOS to interleave all 
memory across all nodes on a page basis (4KB for regular pages and 2M for large pages). Enabling 
node interleaving in the BIOS overrides the use of any tools and causes the OS to interleave all 
available system memory across all nodes in a round robin manner.

C.3 OpenMP
OpenMP is an Application Programming Interface that provides shared memory parallel 
programming constructs for C/C++ and Fortran. OpenMP can be used for developing applications to 
run on a variety of multicore machines. OpenMP is supported by a wide variety of C and Fortran 

http://www.novell.com/collateral/4621437/4621437.pdf
http://www.openmp.org
http://www.openmp.org
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compilers and is available for both  Linux and Windows programming environments.  For more 
information, see www.openmp.org.

http://www.openmp.org
http://www.openmp.org
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Appendix D NUMA Optimizations for I/O 
Devices

D.1 AMD64 System Topologies
AMD family 15h and AMD Opteron™ systems range from single-node desktop to two, four, and 
eight node servers with the potential for even larger systems. Each node in the AMD family 15h 
system consists of four compute units attached to an integrated memory controller and up to four 
HyperTransport™ links. Models 20h – 2Fh consist of up to five compute units and models 10h – 1Fh 
consist of one to two compute units.

I/O devices connect to the system over non-coherent HyperTransport™ links. The term non-coherent 
I/O refers to a configuration in which the processor does not cache memory residing on an I/O device 
and in which the I/O device does not cache system memory shared by the processors.

The integrated Northbridge converts requests issued on the non-coherent HyperTransport link into 
coherent requests before forwarding them into the coherent fabric. Since memory is sharable and 
coherent to all of the processors in the system, it is possible that the latest copy of the requested 
memory location is not in memory, but is located in one of the processor caches, if that memory 
location is cached and that cache-line has subsequently been modified by one of the processor cores. 
In this case, the processor cache holding the data must recognize that it is the owner of the data and 
must return this data to the I/O device. This is referred to as probing the caches. This implies that the 
latency to obtain the data will be directly affected by the location of the latest data at the time the I/O 
device requests it.

Physical I/O devices are typically connected to PCI, PCI-X, or PCI Express interfaces that are 
bridged through a chipset component to non-coherent Hypertransport links.  Alternatively, some I/O 
devices may attach directly to non-coherent Hypertansport links by means of custom components or 
an HTX interface.  There may be multiple non-coherent Hypertransport links in a system that provide 
sufficient bandwidth and fan-out to numerous PCI busses and I/O devices.  These multiple links may 
be attached to multiple different processor nodes. Thus, I/O devices can be considered to have 
NUMA properties and have an associated "home" node.  The optimizations and recommendations 
described in this appendix are intended to leverage the NUMA properties associated with I/O devices 
to improve performance.

D.2 Optimization Strategy
The OS can help manage device NUMA topology information to supplement existing OS NUMA 
support by means of affinity for device-driver buffers and resources (such as interrupt-pin 
assignments, interrupt service routines (ISR), deferred procedure calls (DPC)), when device drivers 
are loaded. The application I/O-thread is the portion of application code that calls the device's I/O 
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API, which in turn will call the I/O device-driver. On AMD family 15h systems, applications that 
interface with an I/O device (through API/device drivers) usually perform best when the following 
conditions are true:

• Direct memory access (DMA) transfers to/from the I/O device should access memory on the node 
to which the I/O device is attached.  From the software point of view, this is equivalent to locating 
I/O buffers on the node where the associated I/O device is attached.
Latencies of local memory reads by I/O devices can be ~10% to 25% lower than reads that access 
remote or non-node local memory.

• The device uses a significant amount of memory-mapped I/O (MMIO) from the processor 
directly to the device. Memory-mapped I/O is much more efficient than programmed I/O (PIO) 
from the point of view of the processor.  PIO instructions force a strict ordering of memory reads 
and writes, which can cause a significant reduction in instruction throughput on a processor core.  
When I/O locations are memory-mapped, the semantics of their access are such that writes may 
be buffered and combined, greatly reducing any ordering restrictions.

• The actual code modules for the application and device driver are located on the node to which 
the I/O device is attached, i.e., the linear address of the code is physically mapped to memory on 
that node.

To take advantage of these performance factors, the following practices are recommended:

• Locate a driver's specific I/O device in the system and allocate memory to the node where the 
non-coherent Hypertransport link is located.

• Specify interrupt (ISR and DPC) affinity to a specific processor core and node and relocate driver 
code to the node where the driver, ISR, and DPC will execute.

• Stream data to buffers on the node where the I/O device is accessed, by means of non-coherent 
Hypertransport links.

The conditions listed above increase performance primarily due to:

• Latency between the I/O device to the NUMA-closest memory and processor cache(s) is lower.

• OS scheduler opportunities—the code-flow sequence from application code to I/O API to kernel 
dispatcher to device driver code remains on one processor core (for OSs that run a device from 
specific processor cores) and is uninterrupted.

• The code fetched for the application and device driver is mapped to the closest memory. The 
coherent HyperTransport link no longer needs to fetch code blocks from far nodes, freeing 
coherent HyperTransport bandwidth for other traffic.

NUMA-aware applications and drivers will ensure that your software will run with the highest 
performance possible across the many varying system topologies, from the single node desktop with a 
single noncoherent HyperTransport link to a large scale server with multiple noncoherent 
HyperTransport links.
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Determining Number Of Nodes in AMD Family 15h Processor Systems in 
User-Mode
To implement the aforementioned optimization strategy, user mode programs can take advantage of 
the NUMA API support functions provided by various OSs to determine the number of nodes in the 
system, schedule threads, and allocate memory. While existing NUMA APIs that provide processor-
to-memory NUMA support are well-established, support functions to enumerate the system topology 
for I/O devices are less mature.  

For example, while Microsoft Vista and Windows Server 8 operating systems now provide support 
for determining a "home node" for an I/O device by means of the SetupDiGetDeviceProperty() 
and GetNumaProximityNode() functions, obtaining the same information from Linux is less 
straightforward, but available through /sys/devices/pci*/*/local_cpus. 

A user-mode program must therefore create/allocate buffers and must depend to a large degree upon 
the operating system to allocate buffers optimally for the system into which the device is plugged. 
Currently most NUMA configuration information comes from the device-drivers and OS. 

Applications should strive to allocate memory and schedule threads in a consistent manner (assigning 
threads to specific processors on a node) by using the NUMA API and allowing device drivers to do 
whatever is optimal—such as remapping linear to physical static I/O-buffers closer to the I/O device, 
copying buffers, etc., depending on the specific device and its latency characteristics. By grouping the 
threads that perform I/O to specific compute units on a node, it becomes easier to dynamically switch 
the entire device NUMA configuration to another compute unit or set of compute units on another 
node to verify whether performance increases or decreases. This may be necessary in cases where 
there is insufficient OS support to determine the NUMA node to which a particular I/O device is 
attached. However, the memory buffers do not switch automatically, even if the thread switches. The 
buffers remain on the nodes to which they were allocated and must be reallocated, if desired. 

The examples that follow use Microsoft APIs. Developers who are creating applications running 
under Linux™, Solaris and other operating systems should consult the NUMA API documentation 
specific to their target environment. The guidelines in following section are recommended to 
compliment operating system mechanisms to correctly establish the optimal device NUMA 
configuration for a device.

D.3 Identifying Nodes that Have Noncoherent 
HyperTransport™ I/O Links

This section describes some of the mechanisms that can be used to determine the I/O device 
configuration with respect to NUMA nodes. In cases where the functionality provided by 
SetupDiGetDeviceProperty() and GetNumaProximityNode() is not available, the techniques 
described here can be used to determine which nodes possess non-coherent Hypertransport links and 
which PCI buses are down-stream from them.  This information can be used to determine a logical 
“home” node for each I/O device.
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The following sections include examples of how to associate an I/O device to a node by using the 
device's known PCI Bus number and by using the memory-mapped I/O address of the device that is 
provided in the device’s base address register (BAR).

In general, AMD Family 15h propcessor-based systems can have up to eight nodes. Every I/O-device 
in the system must be connected to a node by means of a non-coherent Hypertransport link. Each 
node can be identified in the PCI configuration space using the PCI device ID on PCI bus 0 starting 
with device 24 (18h) function 0h and counting up to device 31 (1Fh) function 0h. Systems can have 
up to eight nodes; each node appears as one PCI device. Nodes with noncoherent HyperTransport 
links can be identified by reading the initialized values of the link connected bit (bit 0) and the 
noncoherent bit (bit 2) of the HyperTransport link type register for each HyperTransport link. There is 
one link type register for each link. Family 15h processors support up to four Hypertransport links; 
for each node, the registers are located at function 0h, registers 98h, B8h, D8h, F8h (links 0 through 3, 
respectively). The layout of the link type registers is shown in Figure 11.
2 

Figure 11. Link Type Registers F0x[F8, D8, B8, 98]

Only One Node in System Has Noncoherent HyperTransport I/O Links
If only one node in the system contains noncoherent HyperTransport link (or links), then record that 
node number; this node contains all I/O-Devices in the system. Memory buffers that are accessed by 
the I/O device(s) for DMA should be allocated on this node for lowest device-to-memory latency. 
Optimally, the I/O driver code should also run on a processor core on this node, resulting in the lowest 
latency for MMIO writes/reads to the device.

More Than One Node in System Has Noncoherent HyperTransport I/O 
Links
If more than one node contains a noncoherent HyperTransport link (or links), then the driver will 
need to associate the specific I/O device to a specific node in the system. As mentioned above, it may 
be possible on systems running Microsoft operating systems to obtain this information by means of 
the SetupDiGetDeviceProperty() and GetNumaProximityNode(), or from Linux systems through 
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/sys/devices/pci*/*/local_cpus. However, if these mechanisms are not available, it is also 
possible to use either of the following methods:

• Using the device's PCI-configuration base address register (BAR), software determines the node 
to which the I/O-Device is attached by comparing its base address to the contents of the MMIO 
routing table.

• Using the device's bus-number, the software obtains the node to which the I/O device is attached, 
based on the PCI bus to which PCI configuration cycles are steered.

Be sure to check the operating-system's API for other possible methods as well.

Determining the Location of the I/O-Device Using PCI-Configuration Base 
Address Registers
The first method uses the MMIO base and limit address registers. Figures 12 through 14 below show 
the location of the components of the base and limit addresses in PCI configuration space registers. 
The base and limit addresses are formed by reading these registers and masking off and merging the 
appropriate bits. There are a total of 12 address ranges determined by the base and limit addresses.  
Each address is formed by combining bits 31:8 from the low register with bits 7:0 from the high 
register (for the base) or bits 23:16 from the high register (for the limit). The result of concatenation 
of these two bit fields is bit field  47:16 of the address.  Each address is aligned on a 64K byte 
boundary.  See the BKDG for more details on PCI configuration space registers.

PCI/PCI-X/PCIe devices have a base address register (BAR) that allows the system BIOS and OS to 
map the device into the system address space. The BAR is either a 64-bit octword-aligned address in 
the eight bytes starting at offset 15h, or a 32-bit octword-aligned address in the four bytes starting at 
offset 15h. Bits 2:1 of the byte at offset 15h distinguish the size of BAR as follows (see the PCI Local 
Bus Specification for more details.):

Table 16. Size of Base Address Register

Value Base Address Register 
Size Device Location

00 32-bit decoder Device is located anywhere in lower 4GB address space.
01 32-bit decoder Device is located in lower 1MB address space.
10 64-bit decoder Device is located anywhere in 264 address space.
11 32-bit decoder Reserved.
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Figure 12. MMIO Base Low Address Registers F1x[B8h, B0h, A8h, A0h, 98h, 90h, 88h, 
80h]

 

Figure 13. MMIO Limit Low Address Registers F1x[1BCh, 1B4h, 1ACh, 1A4h, 9Ch, 
94h, 8Ch, 84h]

 

Figure 14. MMIO Base/Limit High Address Registers F1x[1CCh, 1C8h, 1C4h, 1C0h, 
19Ch, 198h, 194h, 190h, 18Ch, 188h]
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Most hardware is designed so that the BAR register contents can be read using MMIO or PCI 
configuration reads, if the driver can obtain the bus, device, and function of its device. Driver-code 
reads the BAR field and uses the address to find the node in the system that acts as the device bridge 
to decode this address in order to steer MMIO cycles into the appropriate down-stream bus (PCI, 
PCIe, PCI-X).

The following procedure uses the physical address of the device as an inclusive field to find the 
correct node hosting the device. This procedure compares addresses at a granularity of 64K, which is 
the granularity of allocation for MMIO regions.

Step 1. Create 64-bit or 32-bit integer from the device’s BAR Registers based on bits 2:1.

Mask off bottom 4 bits (3:0) to create INT64 deviceBaseAddress. 

Step 2. Select any node in the system (node 0, etc) and check each of the 8 memory-mapped I/O 
address map regions to determine the node that will decode the I/O-Device. The memory-
mapped I/O address map registers decode MMIO, if the physical address is greater than the 
base field and is less than or equal to the limit field programmed into these registers. 

Step 3.  Initialize loop counter to 12.

Step 4. Move 0x80h to variable startIndex and 0x180 to variable highIndex (Bus 0, Device N 
(N=AMD Node Number, 18h, 19h, etc), Function 1, Registers 0x80 and 0x180, 
respectively).

Step 5. Read PCI configuration register startIndex into variable (int64) nodeMMIOaddress. 

Step 6. Clear the lower 8 bits (bits 7:0) of nodeMMIOaddress.

Step 7. Left-shift nodeMMIOaddress by 8.

Step 7a. Read PCI configuration register highIndex into int64 variable mmioHigh.  Save a copy in 
int64 variable orgMMIOhigh.

Step 7b. Left shift mmioHigh by 40. Then clear the most significant bits 63:48 to zero.

Step 7c. Place the logical OR of mmioHigh and nodeMMIOaddress into nodeMMIOaddress.

Step 8. Now get the node's MMIO limit by reading register startIndex + 4 into int64 variable 
mmioLimit. Save a copy of mmioLimit to temporary variable (int64) orgMMIOlimit.

Step 9.  Clear mmioLimit[7:0]. (See Step 7.)

Step 10. Left-shift mmioLimit value by 8, then OR in bottom 16-bits to all '1's (0xFFFF). This is 
because the hardware effectively uses all '1's in lower 16-bits of the address.

Step 10a.Left shift orgMMIOhigh by 24, and then clear bits 63:48 and 39:0 to zero.

Step 10b.Place the logical OR of orgMMIOhigh and mmioLimit into mmioLimit.
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Step 11. Compare deviceBaseAddress, to see if it is greater than or equal to nodeMMIOaddress. If 
so, we then need to check that deviceBaseAddress falls within the MMIO limit of the 
node, do this by checking that deviceBaseAddress is lower than or equal to mmioLimit. If 
this is true, we're done, save the node ID number by extracting bits 2:0 in orgMMIOlimit.

Step 12. If Step 11 did not provide match, increment startIndex by 8 (i.e. 80h becomes 88h, which 
is the next Memory-Mapped I/O Base Low register), increment highIndex by 4 (i.e. 180h 
becomes 184h, which is the next Memory-Mapped Base/Limit High I/O register), 
decrement the loop counter and loop back to Step 5.

Determining Where the I/O-Device Is Located Using PCI-Bus Number of 
Device
Some operating systems provide a way for the driver to get system resources assigned to the device 
by use of a resource descriptor.  For example Windows kernel-mode drivers can use the 
CM_PARTIAL_RESOURCE_DESCRIPTOR to obtain the bus number, interrupt-pin assignment, etc. Based 
on this information, the node upstream from the device can be determined by querying the 
configuration map registers (see Figure 15 on page 332).
 

Figure 15. Configuration Map Registers F1x[E0h, E4h, E8h, ECh]

First, get the PCI bus number of the device.

Step 1. Get Bus number. Create 32-bit integer. Save bus as DevBusNum.

Step 2. Check the bus number against the contents of the four configuration base/limit registers to 
determine the node with which the bus is associated. These registers reside in the 
Northbridge PCI configuration space at offsets E0h through ECh. Each register maps a 
contiguous range of PCI bus numbers to a particular node, allowing up to four separate bus 
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ranges to be mapped to as many as four different nodes. The registers are replicated on each 
node so it is necessary to check the registers of only one node. 

The remaining steps constitute a loop to access all four registers and implement step 2. Use the 
configuration map registers (Figure 15) to determine the node to which the device is attached.

Step 3. Initialize loop index cm_node to E0h.

Step 4. Read Northbridge PCI configuration space offset cm_reg and test the device compare mode 
enable bit (bit 2 DevCmpEn).

Step 5. If the DevCmpEn bit is set, use the PCI bus Device number in place of the PCI bus number 
for this check (save device number as DevBusNum).

Step 6. Read each configuration base/limit register and compare DevBusNum against the range 
defined by the BusNumBase and BusNumLimit fields until the desired bus range is found.

Step 7. Get the node number from the DstNode field of that register. The I/O device is attached to 
this node and the device’s buffers should be allocated on this node. The range comparison 
succeeds if DevBusNum is greater than or equal to BusNumBase and less than or equal to 
BusNumLimit.

Step 8. If not successful, increment cm_node by 4 and return to step 3.

D.4 Access of PCI Configuration Register
Kernel mode drivers can use the operating system’s low-level port access functions to read PCI 
configuration registers in the AMD Family 15h processor and integrated host bridge. These registers 
specify the system topology—the nodes on which each device resides.

A brief description of how to generate PCI configuration space reads is described below. Consult the 
BIOS and Kernel Developer’s Guide for AMD Family 15h Processors, order# 42301, for a more 
detailed description of PCI configuration space. The following scheme uses a configuration index 
port (configuration address register 0CF8h) as shown in Figure 16 and a configuration data port 
(configuration data register 0CFCh) as shown in Figure 17.
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Figure 16. Configuration Address Register (0CF8h)

 

Figure 17. Configuration Data Register (0CFCh)

Use of Index and Data Ports
For thread-safety reasons, kernel mode function drivers should avoid performing the I/O directly to  
ports 0CF8h and 0CFCh in order to ensure that only a single thread is using the index and data ports 
exclusively.

The following pseudocode shows how (after ensuring exclusive access), an OS support routine or 
command-line debugger, performs I/O to read PCI configuration registers in the AMD 
Processor/Northbridge.

BUS 0x0, Device x18h (24), Function 0x1, register 0x60h // Node ID Register:

unsigned int busNum;
unsigned int devNum;
unsigned int funcNum; 
unsigned int regNum; 
unsigned int pci_registerSelect;
unsigned int pci_configData;

// Setup desired bus, device, and function number.
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busNum=0x0;
devNum=0x18;
funcNum=0x1;
regNum=0x60;

// Setup the register with bus, device, and function.
// Also set the enable register read bit 31 0x80000000. 

pci_register=(pci_registerSelect | 0x80000000); 
pci_register=(pci_registerSelect | (busNum << 16));
pci_register=(pci_registerSelect | devNum << 11);
pci_register=(pci_registerSelect | (funcNum <<8));
pci_register=(pci_registerSelect | regNum);

// setup for PCI-configuration Read

#define PCI_CONFIGURATION_ADRESS 0xCF8
#define PCI_CONFIGURATION_DATA   0xCFC

__asm{
mov  edx, PCI_CONFIGURATION_ADRESS;
mov  eax, pci_registerSelect;
out  edx, eax; //32-bit write 
mov  edx, PCI_CONFIGURATION_DATA
in   eax, edx// read data
mov  pci_configData, eax

      } // endasm here

When the system is operating under the runtime environment, the ideal thread-safe method by which 
to access the device-specific PCI configuration space is to use the operating system's PCI-bus driver. 
The methods to do this depend on the operating system.

D.5 I/O Thread Scheduling

Optimization
Keep the I/O thread scheduled on the same node as the I/O device buffers, and allocate the I/O 

device buffers on the node where the I/O device is located.

Rationale
By assigning processor affinity, threads can be maintained on the node closest to the I/O device 
buffers. Operating system functions, such as VirtualAllocExNuma( ) can be used to specify the 
node to which to allocate the I/O device buffer-memory. The node selected should be the same node 
where the I/O device can be found down-steam via the noncoherent Hypertransport link.  Use the 
mechanisms described above to determine the appropriate node.  Set the processor affinity mask for 
the threads that will access these I/O buffers to indicate the cores of this node using operating system 
functions, such as SetThreadAffinityMask( ).
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D.6 Using Write-Only Buffers for Device Consumption

Optimization
Use streaming-stores to optimize data for I/O-device consumption, if the application is using a 

write-only buffer.

Rationale
A processor writes to write-only output buffers, but does not read them. When using a write-only 
output buffer to be consumed by a device:

• Create the buffer on the node where the I/O device buffers are established. (This should be the 
node which has the down-stream path to the I/O device, as recommended in D.5 on page 335.)

• Use streaming-store instructions to avoid moving the buffer into the L1 cache of the writing CPU. 

• Use the non-temporal streaming store instructions such as:
MOVNTI—Stream to memory-integer
MOVNTPS—Stream to memory-packed scalar floating-point

• Consult compiler intrinsic support to avoid assembly-language, such as:
void _mm_stream_ps(float * p , __m128 a ); // Uses MOVNTPS

When streaming the data by use of non-temporal instructions, data is write-combined on the node 
sending the data and then is forwarded to the node where the I/O-device buffer exists (see 
Appendix A, “Implementation of Write-Combining.”).  Streaming the data has two advantages:

• First, there is no coherent HyperTransport read traffic from memory into the L2 cache.

• Second the device read/write latency to the buffer can be lower if the buffer is closer to device.

D.7 Using Interrupt Affinity

Optimization
Make sure that interrupts from a device are serviced by a processor core that is on the same node 

as the device.

Rationale
Interrupt affinity is maintained by assuring that interrupt service routines (ISRs) from a device are run 
on a core that is on the same node as the device.  There are various ways this enhances performance:

• Interrupt affinity can improve the service routine's cache locality—code and data have a better 
chance of being resident in the AMD family 15h processor’s L1, L2, or L3 cache.
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• Handling the interrupt on the node where the device is located lowers the latency (number of 
hops) for any MMIO reads or writes that the service routine may make to the device.

• Performance can be further increased if memory, including device buffers, that the service routine 
accesses are allocated on the same node.

• Use the techniques described in sections D.3 and D.4 to determine to which node a particular 
device is attached.

Setting up Interrupt Affinity

There are several ways to set up interrupt affinity.

• Use an OS-provided API to specify which processor cores should run the interrupt service routine 
(ISR). Some OSs can allow the device’s ISR to run on a set of primary processor cores. Select the 
cores on the node to which the I/O device is connected downstream. Under Microsoft® 
Windows™, the driver can use the WdfInterruptSetPolicy( ) function in conjunction with the 
IoConnectInterrrupt( ) function to accomplish this (consult Microsoft driver development 
documentation for full details).  Device buffers that the ISR accesses should be allocated on this 
node as well.

• Devices that are message-signaled interrupt (MSI or MSI-X) capable can specify interrupt affinity 
in the MSI message. Specify processor cores on the node into which the I/O device is attached. 
Message-signaled interrupts offer many performance improvements over legacy PCI/PCI-X line-
based interrupts. Less interrupt sharing occurs, which decreases the latency required to service the 
interrupt.

• Specify which processor cores should run the deferred procedure call (DPC) for further 
processing. If possible, queue the DPC that will be run after the ISR on the node into which the 
I/O-Device is attached. Map the buffers used by the DPC to the node closest to the I/O-Device. 
For example, the Microsoft Windows operating systems provides one DPC queue for each 
processor. Drivers can control the queue to which the operating system assigns the DPC. By 
default, when the driver calls KeInsertQueueDpc( ) or IoRequestDpc( ), the DPC is queued 
on the currently active processor. In addition, drivers can specify the processor queue by calling 
KeSetTargetProcessorDpc( ) before calling KeInsertQueueDpc( ) or IoRequestDpc( ).

D.8 Using IOMMUv2 features
Some AMD Family 15h processors (example: model 10h-1Fh) include an enhanced IOMMU that 
controls I/O device access to system memory. The IOMMU provides support for address translation 
and access protection on DMA transfers by peripheral devices.

The IOMMUv2:

• Remaps addresses above 4GB for devices that do not support 64-bit addressing

• Allows a guest OS running under a VMM to have direct control of a device

• Provides page granularity control of device access to system memory
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• Allows a device direct access to user space I/O

• Filters and remaps interrupts.

Refer to IOMMU Architectural Specification, issue # 34434 revision 2 for more information 
regarding detection of IOMMU features and other programming information.

IOMMUv2 also enables a key I/O device memory optimization. With IOMMUv2, I/O devices have 
direct access to driver pinned memory. Prior to this, I/O devices could only see restricted portions of 
memory on a local CPU. The assignment of this memory was traditionally done through GART 
mappings. The IOMMUv2 removes this restriction, enabling any application to share data directly 
with I/O devices. This removes the need for extra memory copy operations to move data into pinned 
I/O buffers.

The IOMMUv2 provides a new capability to access guest virtual (user) space. This requires a new 
generation of compatible I/O devices that support the PASID TLP prefix. These attributes combined 
with the ability to support users space address translation for unpinned memory facilitates saving 
extra copies, making IOMMUv2 more efficient.

These new capabilities do not directly change anything in the NUMA architecture. The NUMA I/O 
optimizations mentioned earlier in this section still apply in the case of device buffer memory 
mapping using the IOMMU. For instance, although the device can directly access memory on other 
NUMA nodes, best performance will result when memory is accessed on the local node. Also any 
interrupt service routines should still be locked to the local node.
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Appendix E Remarks on the RDTSC(P) 
Instruction

The RDTSC and RDTSCP instructions are used to load the value of the time stamp counter (TSC) 
into the EDX:EAX register pair. These two instructions differ as follows: the RDTSC instruction may 
execute speculatively and out of order with respect to other instructions (except other RDTSC 
instructions), while the RDTSCP instruction does not. The RDTSCP also identifies the processor core 
on which it is executed. When a code sequence ending in an RDTSC instruction is executed, there is 
no guarantee that all prior instructions in the code sequence have been retired at the time when the 
TSC is read.

On the other hand, the RDTSCP instruction waits for all the previous instructions to be retired before 
reading the TSC, thus producing the expected TSC value. For this reason, it is recommended that 
RDTSCP be used to measure the clock cycles consumed by a hotspot function. Both RDTSC and 
RDTSCP are executed in program order with respect to other RDTSC(P) instructions. 

If RDTSC is used, it should be accompanied by a separate serializing instruction (such as a CPUID 
instruction). In AMD Family 15h processors, the MFENCE instruction, which is not intercepted in 
virtualized environments, can be used in place of the CPUID instruction as a serializing instruction.

In the previous generation multi-core processors, each core has its own timestamp counter locked to 
its core. Starting with AMD Family 15h processors, there exists a single clock source in the 
NorthBridge for all timestamp counters in a processor and these counters are incremented in lockstep. 
This enables the cycle counter to provide monotonically increasing values at a constant rate even 
when the cores are in power saving modes. This behavior of RDTSC(P) is indicated if EDX bit 8 is 
set to 1, as returned by CPUID function 8000_0007h. Note that an operating system can write 
different values to each core's TSC and can establish or correct a core-to-core skew, after which the 
TSCs all advance in lockstep with each other and thus maintain a constant core-to-core skew. The 
precision with which software can synchronize the TSCs across cores is dependent on the approach 
used, as well as platform factors, such as the consistency of inter-core communication latency through 
shared memory.  This precision is typically limited to a few tens of cycles.  In particular, the skew 
may exceed inter-core communication latencies such that inter-core observation of TSC values may 
not show strict monotonic behavior—a TSC value acquired from another core after the local TSC is 
read may have a lower value. Successive TSC reads within a core, however, give monotonically 
increasing values.

The HWCR[TscFreqSel] bit is set by the BIOS to scale the TSC frequency to the P(0) frequency of 
the CPU. To calculate the elapsed wall clock time from the values returned by two RDTSC(P) 
instructions, use the following formula.

Elapsed Wall Clock Time (in seconds) = (Second RDTSC result – First RDTSC result) /  CPU's P(0) frequency.
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The following example explains how to use the RDTSC(P) instruction to measure the clock cycles 
consumed by a hot spot function: 

unsigned long long RDTSCP()
{
  unsigned long long tsc;
  asm volatile (".byte 0x0f, 0x01, 0xf9" : "=A" (tsc) : : "%ecx");
  return tsc;
}

#define MFENCE() asm volatile("mfence")

unsigned long long compute_mfence_overhead(int N)
{
  int i;
  unsigned long long tsc, next_tsc;
  tsc = RDTSCP();
  for (i = 0; i < N; i++)
    MFENCE();
  next_tsc = RDTSCP();
  return ((next_tsc - tsc)/N);
}
  
unsigned long long time_hotspot(int N)
{
  unsigned long long tsc, next_tsc, avg_hotspot_time;
  int i;

  /* start the timer */
  tsc = RDTSCP();
  /* N is the number of iterations. The higher the value of N,
     the more accurate the avg_hotspot_time (except for OS context switches.*/
  for (i = 0; i < N; i++)
    {

    /* MFENCE is used to serialize the control flow 
                 between iterations.  */
      MFENCE(); 
      hotspot(); /* HotSpot function */
    }
  next_tsc = RDTSCP();

  avg_hotspot_time = (next_tsc - tsc)/N - compute_mfence_overhead(N);
  return (avg_hotspot_time);
}
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Appendix F Guide to Instruction-Based 
Sampling on AMD Family 15h 
Processors

Instruction-Based Sampling (IBS) is a performance monitoring technique that provides precise 
information about AMD64 instruction fetch behavior and about the execution of operations that are 
issued from AMD64 instructions. This information can be used to analyze and improve the 
performance of programs executing on AMD Family 15h Processors.

IBS provides four important advantages over conventional performance counter sampling:

• Hardware events are attributed precisely to the instructions that cause the events. Conventional 
performance counter sampling is not precise, making it difficult, if not impossible, to attribute 
events to specific instructions. This limits the ability to pin-point performance issues at the 
instruction and source code levels.

• A wide range of events are monitored and collected with each IBS sample. Either multiple 
sampling runs or counter multiplexing must be used to collect the same range of information with 
conventional performance counter sampling.

• The virtual and physical addresses of load/store operands are collected. Profiling tools can use 
this information to associate specific data structures with the x86 instructions performing 
load/store operations.

• Latency is measured for key performance parameters such as data cache miss latency.

The precision afforded by IBS also enables automated optimization techniques (e.g., profile-directed 
optimization) which require detailed, precise information about instruction-level program behavior.

Note: Similar coverage and functionality exists in the LWP instructions, see the Application’s 
Programming Manual.

F.1 Background
Some familiarity with the microarchitecture of AMD Family 15h processors is required to understand 
how instruction-based sampling works and to interpret the data produced by IBS.  Important 
information on the microarchitecture of AMD Family 15h Processors can be found in 
“Microarchitecture of AMD Family 15h Processors” on page 29 of this volume. This section 
summarizes a few important points.

The BIOS and Kernel Developers Guide (BKDG) for AMD Family 15h Processors, order# 42301, 
provides many specific details about IBS (events, model specific registers, etc.) This appendix is 
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intended to complement the information in the BKDG. The BKDG should be regarded as the 
definitive resource about IBS featuures.

F.2 Overview
The successive pipeline phases of fetch, decode, dispatch and execution decouple the fetching of 
AMD64 instructions from their eventual conversion and execution as macro-ops. The separation 
between fetch and execution is reflected in the IBS mechanism. Instruction-based sampling consists 
of two parts:

• Fetch sampling—collects and reports performance data on AMD64 instruction fetch behavior. 
Fetch sampling provides information about instruction TLB and instruction cache behavior for 
fetched instruction bytes.

• Op sampling—collects and reports performance data on the execution of instruction operations 
(ops). Op sampling produces retirement cycle counts that are common to all sampled operations 
and execution-related data that are specific to the kind of operation (e.g., branch or return) that 
was sampled, including load and store operations.

A fetch is an access to the instruction cache that results in bytes being delivered to the decode 
instruction buffer and can contain multiple instructions.

Op sampling records and reports the address of the AMD64 instruction from which the op was 
generated and issued. This allows profilers and other supporting software tools to associate op 
performance data with a “parent” AMD64 instruction.

Fetch sampling and op sampling are independent and may be separately enabled. Fetch and op 
sampling may also be enabled at the same time. When fetch and op sampling are enabled at the same 
time, some additional interference will result due to the larger number of samples taken, effect on 
pipeline behavior, cache effects, etc. This behavior is a natural consequence of sampling. Fetch and 
op sampling each have their own model specific registers (MSRs) to control sampling and to report 
results.

The same overall process is used to take a fetch sample or an op sample. Generically, an IBS sample 
is taken in the following way:

1. Software loads a maximum instruction fetch (or op) selection count into the appropriate IBS 
control MSR.

2. Software enables IBS mode in the appropriate control MSR.

3. The periodic selection counter is automatically incremented by the hardware. For fetch sampling, 
the periodic fetch counter is incremented for each completed fetch. For op sampling, the periodic 
op counter is incremented each processor cycle (cycles-based selection mode) or the periodic op 
counter is incremented each time an op is dispatched (dispatched op-based selection.)

4. When the selection counter reaches the maximum selection count, an instruction fetch (or op) is 
selected and the instruction fetch (or op) is tagged.



Appendix F Guide to Instruction-Based Sampling on AMD Family 15h Processors 343

Software Optimization Guide for AMD Family 15h Processors47414 Rev. 3.06 January 2012

5. As the tagged instruction fetch (or op) is processed by the hardware, events that occur due to the 
tagged instruction fetch (or tagged op) are recorded by the hardware (e.g., did it cause a cache 
miss, branch mispredict, etc.).

6. If the tagged instruction fetch (or tagged op) finishes, an interrupt is raised and all of the collected 
information is passed to an interrupt service routine (ISR) through the IBS MSRs.

7. The ISR saves the information producing an IBS sample. After collecting the sample, the ISR 
clears the current count and goes to step 2.

Software using IBS needs to take a few differences between fetch and op sampling into account in 
order to handle both kinds of performance data. The differences between fetch and op sampling are 
described in the following sections.

F.3 IBS fetch sampling
This section describes IBS fetch sampling in more depth. IBS fetch sampling captures information 
about the process of fetching instruction bytes.

An “attempted fetch” is a request to load instruction bytes from a specific virtual memory address. 
(The term “linear” is sometimes used in place of “virtual” when referring to virtual addresses.) A 
“completed fetch” is an attempted fetch (a request) that eventually delivers instruction bytes to the 
decoders. An “aborted fetch” is a request that does not complete. 

F.3.1 Taking an IBS fetch sample
IBS fetch sampling is controlled by values that are configured into specific IBS MSRs (see the 
BKDG for details). The periodic fetch counter and the maximum fetch count value control the 
sampling process. The IBS fetch sampling mechanism counts completed fetches in the periodic fetch 
counter in order to select the next attempted fetch to tag and monitor. When the periodic fetch counter 
reaches the maximum fetch count, the next attempted fetch is tagged and monitored. Thus, the 
maximum fetch select count determines how often an attempted fetch is selected and tagged. This 
quantity is often called the “sampling period.” An interrupt is generated when the tagged fetch 
completes or aborts. IBS information is reported for both completed and aborted fetches.

Both the periodic fetch counter and the maximum fetch count are 20-bit values. Software can set the 
high order 16 bits of the maximum fetch count; the low order 4 bits are always set to zero. The 
periodic fetch counter is reset when the maximum fetch count is reached. Under software control, the 
low order 4 bits of the periodic fetch counter can be set to a pseudo-random 4-bit value. 
Randomization helps to prevent the sampling process from “syncing up” with tight loops that are 
being executed—a periodicity effect that could affect the accuracy of performance statistics. Software 
may also choose to randomize the maximum fetch count by generating its own randomized maximum 
fetch count.

IBS fetch sampling data are returned in MSRs that are read by the interrupt service routine. The 
following information about the tagged  fetch is returned:
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• The virtual fetch address (always valid),

• The corresponding physical fetch address (valid when the MSR flag IbsPhysAddrValid is set),

• Event flags indicating completion, instruction cache (IC) miss, L1 instruction translation 
lookaside buffer (ITLB) miss or L2 ITLB miss,

• Size of the page translation in the L1 ITLB (a 2-bit field that is valid when the MSR flag 
IbsPhysAddrValid is set), and

• The instruction fetch latency in cycles.

Software may augment the IBS fetch data with other information such as a timestamp, the process 
identifier, etc. The virtual fetch address directly relates the information in the sample to the fetched 
instruction bytes, which cannot be done with counter sampling because conventional counter 
sampling records the interrupt restart IP instead of the instruction that actually caused the events. Out-
of-order execution further complicates the attribution of an IP to events since many instructions may 
be in-flight. The IBS virtual and physical fetch addresses precisely identify the instruction that caused 
the events reported by the hardware—the key advantage of IBS.

Table 17 table summarizes the hardware event flags and values that are available for analysis.

The flag/field names used in this table correspond to the flags and fields in the IBS model-specific 
registers. Please see the BIOS and Kernel Developer’s Guide for AMD Family 15h Processors, 
order# 42301, for the location, size and position of these flags and fields.

The IBS fetch latency value (IbsFetchLat) reports the number of cycles between the instant the fetch 
was initiated and the instant an instruction was delivered to the decoder (completion) or until the 
instant when the fetch was aborted. The translation page size (IbsL1TlbPgSz) is a 2-bit field that 
indicates the size of the page that was used during virtual to physical address translation as performed 
in the L1 ITLB.

F.3.2 Interpreting IBS fetch data
Before discussing the interpretation of IBS fetch data, it helps to have a little background on the 
process of fetching instruction bytes.

Table 17. IBS Hardware Event Flags
Flag/Field Purpose/meaning

IbsPhyAddrValid Physical address and page size are valid
IbsL1TlbMiss Fetch initially missed in L1 ITLB
IbsL2TlbMiss Fetch initially missed in L2 ITLB
IbsL1TlbPgSz Size of page translation in L1 ITLB
IbsIcMiss Fetch initially missed in the instruction cache
IbsFetchComp Fetch completed
IbsFetchLat Cycles from fetch initiated to completed/aborted
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An attempted fetch must first be processed by the instruction translation lookaside buffers (ITLB) to 
convert the virtual address to a physical address. AMD Family 15h Processors use a two-level ITLB 
structure consisting of a level 1 (L1) ITLB and a level 2 (L2) ITLB. If page translation information is 
found in the L1 ITLB, the virtual address is translated using that information. If translation 
information is not in the L1 ITLB (an L1 miss) and it is available in the L2 ITLB, the L1 ITLB is 
reloaded with the information from the L2 ITLB and address translation completes. If neither ITLB 
contains the page translation information (an L1 ITLB miss and an L2 ITLB miss), then the 
information is loaded from memory-resident page tables.

Once the physical address is available, the instruction cache (IC) is accessed using the physical 
address. If the instruction bytes for that address are present in the IC, it is returned and is delivered to 
the decoders. If the instruction bytes are not present in the IC (an IC miss), it must be obtained from 
either the L2 cache, L3 cache, or system memory. In any case, the instruction bytes are delivered to 
the decoders once it is available.

As stated earlier, an attempted fetch is said to complete when its instruction bytes are delivered to the 
decoders. An attempted fetch that did not complete is an aborted fetch. An attempted fetch may abort 
at any point in the process of fetching instruction bytes. A fetch may abort due to a control transfer 
misprediction from an earlier fetch.

Instruction fetch is a highly speculative activity. Some completed fetches could also be on the wrong 
path, but the redirection does not arrive until after the instruction has left the IC. Thus, some 
completed fetches are speculative and the corresponding instructions may not be executed or retired.
The hardware event flags and values in the previous table are made available to software when an IBS 
fetch sampling interrupt is generated. The miss event flags indicate whether the attempted fetch 
initially missed the L1 ITLB, L2 ITLB, or IC. Address translation and IC access may eventually 
succeed. These flags show the hardware condition on the first attempt at translation/access. Eight 
combinations of the event flags, as shown in the table below, are produced by the hardware. In 
Table 18, "TlbMiss" means "IbsL1TlbMiss or IbsL2TlbMiss," the logical OR of the IBS event flags 
IbsL1TlbMiss and IbsL2TlbMiss.

Table 18. Event Flag Combinations
TlbMiss IbsPhyAddrValid IbsFetchComp IbsIcMiss Interpetation

0 0 0 0 Killed by redirect before ITLB/IC access
0 1 0 1 L1 ITLB hit, IC miss, likely redirect during IC fill
0 1 1 0 L1 ITLB hit, IC hit
0 1 1 1 L1 ITLB hit, IC miss
1 0 0 0 ITLB miss, likely redirect during L1 ITLB reload
1 1 0 1 ITLB miss, IC miss, likely redirect during IC fill
1 1 1 0 ITLB miss, IC hit
1 1 1 1 ITLB miss, IC miss
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The first case, in which IbsL1TlbMiss, IbsL2TlbMiss, IbsPhyAddrValid, IbsFetchComp, and 
IbsIcMiss are all clear, does not provide any useful information since the attempted fetch is killed 
very early before ITLB or IC access. We refer to such fetches as “killed fetches.” 

The other three cases in which a fetch does not complete are also likely due to a redirection. These 
four cases are the result of incorrect branch speculation. While completed fetches have “full” 
information, the IC and ITLB information for aborted fetches is just as important. Instruction cache 
and TLB accesses can be both constructively and destructively influenced by earlier wrong path 
accesses.

F.4 IBS op sampling
This section describes IBS op sampling in more detail. IBS op sampling provides information about 
the execution of ops.

F.4.1 Taking an IBS op sample
IBS op sampling is controlled by values that are configured into specific IBS MSRs. (See the BKDG 
for details.) The periodic op selection counter and the maximum count value control the sampling 
process.  The current periodic op selection count is maintained in an 27-bit counter. Software can read 
and write this counter in order to save and restore its current value, and to preset the count.

A 27-bit maximum op selection count value determines how often a micro-op is sampled (the 
sampling period.) The high order 23 bits of the maximum op selection count are configured by 
software. The internal, low order 4 bits of the maximum op selection count are always zero.

IBS provides two op selection and tagging modes: cycles-based selection and dispatch op-based 
selection. The mode is selected by software through the IBS op control MSR.

• Cycles-based selection. IBS counts processor cycles in order to select and tag an op for sampling. 
The current periodic op selection count is incremented each processor cycle. When the current 
count reaches the maximum op selection value, a one-of-four round-robin counter selects an op in 
the next dispatch line. If the op selected by the round-robin counter is invalid, the next younger op 
is tagged.

• Dispatched op-based selection. IBS counts dispatched ops in order to select and tag an op for 
sampling. When the current periodic op selection count reaches the maximum op selection value, 
the op is tagged.

In both modes, an interrupt is generated when a tagged op is retired. The IBS event and latency values 
are then read from the MSRs by the interrupt service routine. The interrupt service routine may 
combine the IBS op data with other information (such as a timestamp and process ID) forming a 
complete software sample to be saved for post-processing.

Software must randomize the sampling period. Coincident periodicity may occur between the 
sampling process and the workload. Periodicity affects op selection, producing profiles that exhibit 
aliasing effects (over- or under-sampling of certain ops/instructions). Randomization of the low order 
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4 bits is especially important. This must be accomplished by writing a pseudo-random value to the 
periodic op selection counter since the low order 4 bits of the maximum op selection count are always 
zero.

Ops may stall in the pipeline stage in which they are tagged. When cycles-based selection is 
configured, a stalled op is more likely to be tagged. This behavior affects the statistical distribution of 
ops in the resulting program profile. Dispatched op-based selection is the preferred mode because the 
statistical distribution is not affected by stalls and the distribution of samples more accurately reflects 
op and instruction execution frequency.

IBS only returns data for tagged ops that retire. However, a tagged op may be flushed before 
retirement. In this case, IBS data for the flushed op is discarded (i.e., the sample is dropped.). The 
number of dropped samples due to a flushed tagged op can be counted by a performance monitoring 
event (see the BKDG). After a tagged op is flushed, the current count is set to a pseudo-randomized 
value and a new op is tagged when the current count again reaches the maximum count value.

F.4.2 Interpreting IBS op data
An op can be classified into one of several broad categories according to the major operation which it 
performs: arithmetic, logic, shift, etc. In general, IBS treats ops as undifferentiated, that is, the 
category or function is not explicitly identified by IBS. However, two categories of  ops are explicitly 
identified: branch and resync. A branch op implements AMD64 branch semantics and includes 
unconditional jumps, conditional jumps, subroutine call and return. One subtype of branch op is also 
explicitly identified by IBS: return. A return op implements AMD64 return semantics. A resync op is 
only found in certain VectorPath instructions and causes a complete pipeline flush. Branch, return 
and resync are explicitly identified since interesting information about program control flow can be 
obtained by monitoring their behavior.

In addition to performing a major function (such as arithmetic, branch, etc.), an op may initiate a 
memory read, memory write, or a read and write to the same memory address. IBS explicitly 
identifies those ops which perform a load (memory read) and/or store (memory write) operation. 
When interpreting IBS data, please note:

• Some ops can perform a “load-operate-store” sequence to the same address and are identified by 
IBS as performing both a load and a store operation.

• Some branch ops perform a load operation and will be identified by IBS as performing a load. 

The exact type of the sampled op is specified by one or more bits in the IBS MSRs that return sample 
information:

• The IbsOpBrnRet (where the “Ret” suffix stands for “retired”) and IbsOpReturn bits in the 
IbsOpData MSR indicate whether the op was a branch or return.

• The IbsOpBrnResync bit in the IbsOpData MSR indicates whether the op was a resync.

If none of these bits are set, the op is undifferentiated. Undifferentiated ops are still important as they 
provide information about program execution. The IbsLdOp and IbsStOp bits in the IbsOpData3 
MSR indicate whether the op performed a load operation or a store operation, respectively.
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Three values are reported for all ops:

• The virtual address of the parent AMD64 instruction from which the tagged op was issued 
(IbsOpRip), which is valid if the IbsRipInvalid bit is clear,

• The tag-to-retire count in cycles (IbsTagToRetCtr), and

• The completion-to-retire count in cycles (IbsCompToRetCtr).

These values are returned in model-specific registers.

The virtual address of the parent AMD64 instruction can be used to associate the IBS op sample with 
the AMD64 instruction from which the op was issued. More than one op may be issued from a single 
AMD64 instruction. All such ops have the same virtual instruction address (RIP) as the parent 
AMD64 instruction.

Tag-to-retire count and completion-to-retire count are retire-related cycle counts.

Tag-to-retire Count

The tag-to-retire count is the number of cycles between the instant the op is tagged to the instant the 
op is retired. The op is tagged when it leaves the decode unit.

Instructions can stall after they are decoded due to a lack of resources, such as reservation station 
entries. These cycles are included in the tag-to-retire count. 

The tag-to-retire time includes the time spent waiting for operands, time spent waiting to issue after 
operands are available, time spent in an execution unit, and time spent waiting for all the younger ops 
in the scheduling window to retire.

Completion-to-retire count

The completion-to-retire count is the number of cycles between the instant the op completed and the 
instant the op was retired. An operation is complete when it has finished execution. The completion-
to-retire count indicates how long retirement was delayed after completion.

The difference between the completion-to-retire count and the tag-to-retire count is the number of 
cycles that occur between tagging and completion.

F.4.3 Interpreting IBS branch/return/resync op data
Information about branch, return and resync ops are reported in the the IbsOpData MSR.  The event 
flags and counts returned by the IbsOpData MSR are summarized in Table 19. 
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As noted earlier, the IbsTagToRetCtr and IbsCompToRetCtr fields are valid for all op samples, not 
just branch, return and resync ops.

A branch operation is a change in program control flow (or micro-code control flow for 
IbsOpBrnMisp and IbsOpBrnTaken). Information is reported only for retired branches since IBS data 
is only reported for retired ops. (Information for flushed ops is not reported.) Mispredicted branches 
retire then kill all younger ops after them and redirect the front end of the pipeline.

The IbsOpBrnRet flag indicates whether the tagged op was an operation with AMD64 branch 
semantics (set) or not (clear.) If the IbsOpBrnFlag is set then the IbsOpBrnMisp and IbsOpBrnTaken 
flags indicate the execution status of the op as shown in Table 20.

The IbsOpBrnMisp and IbsOpBrnTaken bits can be viewed as a property of the tagged branch op.

The IbsOpReturn and IbsOpMispReturn flags can also be considered to be properties of the tagged 
AMD64 or VectorPath branch op. The IbsOpReturn flag is set when the tagged op was, specifically, a 
return op. The IbsOpMispReturn flag indicates whether the return op was mispredicted or not. A 
resync op is not predicted and is always taken.

Table 19. IbsOpData MSR Event Flags and Counts
Flag/field Purpose/meaning

IbsOpBrnRet Op was a retired branch
IbsOpBrnMisp Op was a branch that mispredicted
IbsOpBrnTaken Op was a branch that was taken
IbsOpReturn Op was a return
IbsOpMispReturn Op was a return that mispredicted
IbsOpBrnResync Op was a resync
IbsTagToRetCtr Cycles from op tagging to retirement
IbsCompToRetCtr Cycles from op completion to retirement

Table 20. Execution Status Indicated by IbsOpBrnMisp and IbsOpBrnTaken Flags
IbsOpBrnMisp IbsOpBrnTaken Execution status

0 0 Was not mispredicted and was not taken
0 1 Was not mispredicted and was taken
1 0 Was mispredicted and was not taken
1 1 Was mispredicted and was taken

Table 21. Execution Status Indicated by IbsOpReturn and IbsOpMispReturn Flags
IbsOpReturn IbsOpMispReturn Execution status

0 N/A Branch op was not a return
1 0 Was a correctly predicted return op
1 1 Was a mispredicted return op
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IbsOpBrnMisp and IbsOpBrnTaken are valid for all branch ops including micro-code ops and return 
ops. The IbsOpReturn and IbsOpMispReturn flags merely provide additional information for return 
ops.

IBS reports the branch target address in a separate MSR. The branch target address is valid if it is 
non-zero. The target address may be used to build a dynamic control graph for frequently executed 
code, including control edges that cannot be determined through static analysis (for example, edges 
due to indirect jumps).

F.4.4 Interpreting IBS Load/Store Data
If the sampled op accesses memory, information about the load and/or store operation is returned in 
four model specific registers:

• The IbsOpData2 and IbsOpData3 registers contain event flag and latency information 
accumulated in the Northbridge and load/store unit, respectively.

• The IbsDcLinAd and IbsDcPhysAd registers contain the virtual (linear) and physical address of 
the memory operand, i.e., the address of the memory location read and/or written.

The address of the memory operand can be used to associate the load or store operation with a data 
structure in memory. The virtual and physical addresses are valid when the IbsDcLinAddrValid and 
IbsDcPhyAddrValid bits are set, respectively, in the IbsOpData3 register. Some ops that are issued 
from VectorPath instructions use a physical address directly. Thus, it is possible to have an IBS 
sample with a valid physical address and an invalid virtual address.

The flags and fields in the IbsOpData3 MSR provide basic information about any memory access 
initiated by the sampled op. The IbsLdOp and IbsStOp fields indicate whether a load and/or store 
were initiated by the sampled op. If a load operation initially misses in the data cache (as indicated by 
IbsDcMiss), the IbsDcMissLat field returns the number of clock cycles from when the miss was 
detected until data was delivered to the core. This field is not valid for store operations.

IbsDcStBnkCon and IbsDcLdBnkCon fields are set when a memory op cannot access the cache due 
to a bank conflict, resulting in a delay of the op.

The data cache miss latency (IbsDcMissLat Dcache) is only valid for loads that miss in the data 
cache. The timed latency interval for the IbsDcMissLat is is calculated from the data cache miss to 
data cache write.

Table 22 summarizes the information in the IbsOpData3 register.

Table 22. IbsOpData3 Register Information
Flag/field Purpose/Meaning
IbsLdOp Tagged op initiated a load operation
IbsStOp Tagged op initiated a store operation

IbsDcL1tlbMiss Translation info not initially present in L1 DTLB
IbsDcL2tlbMiss Translation info not initially present in L2 DTLB
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F.4.5 Interpreting IBS load/store Northbridge data
The memory hierarchy in the AMD Family 15h Processor consists of a shared L1 instruction cache, a 
dedicated cluster L1 data cache, a shared core-pair L2 cache, a shared L3 cache and system memory. 
The L3 cache is shared among the cores within a multi-core processor. System memory is supported 
by a non-uniform memory access (NUMA) architecture in which some portion of physical memory is 
local to the processor while the remaining portions of physical memory are remote. Access to remote 
memory is implemented through the AMD Direct Connect Architecture via coherent 
HyperTransport™ links.

If a core cannot satisfy a load or store operation from L1 data cache or L2 cache, it communicates a 
request to the Northbridge through its System Request Interface. The Northbridge is shared across 
cores. The Northbridge consists of:

• A System Request Interface (SRI) to each core,

• A shared L3 cache (if present),

• A memory controller (MCT) to handle communication with local memory,

• One or more HyperTransport (HT) link interfaces, and

• A crossbar (XBAR) to handle communication between the SRI, MCT and HT links.

Further, the Northbridge performs address space routing. There are four main types of address space 
routing: system memory (DRAM), Memory-mapped IO (MMIO), IO space, and configuration space. 
(See the BIOS and Kernel Developer’s Guide for AMD Family 15h Processors, order# 42301, for 

IbsDcL1tlbHit2M Translation info was eventually present in a 2M page entry in L1 
DTLB

IbsDcL1tlbHit1G Translation info was eventually present in a 1G page entry in L1 
DTLB

IbsDcL2tlbHit2M Translation info was initially present in a 2M page entry in L2 DTLB
IbsDcMiss Load/store initially missed in the data cache

IbsDcMisAcc Load/store crossed a 128-bit address boundary (misaligned)
IbsDcLdBnkCon Load/store had a bank conflict with a load.
IbsDcStToLdFwd Data was forwarded from a store to the tagged load
IbsDcStToLdCan Forwarding from a store to the tagged load was cancelled
IbsDcUcMemAcc Load/store accessed uncacheable memory
IbsDcWcMemAcc Load/store accessed write combining memory
IbsDcLockedOp Load/store was a locked operation

IbsDcMabHit Load/store hit on an allocated MAB entry
IbsDcLinAddrValid Virtual (linear) address valid
IbsDcPhyAddrValid Physical address valid

IbsDcMissLat Data cache miss latency (load only)

Table 22. IbsOpData3 Register Information
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more information about this and other aspects of the Northbridge.) The Northbridge also handles 
communication between a core and its local Advanced Programmable Interrupt Controller (APIC.)

When the Northbridge receives a request for data through the SRI, the data will be retrieved from one 
of several data sources depending upon the physical location of the data and possibly its coherency 
state. Relative to the processor making the request, data may be returned from:

• L1 or L2 cache local to the core(s) making the request

• Local L3 cache

• Remote L1/L2/L3 cache (after traversing a coherent HT link)

• Local system memory (via the local MCT)

• Remote system memory (after traversing a coherent HT link and via the remote MCT)

• Local MMIO, configuration space, or APIC

• Remote MMIO or configuration space

Information about Northbridge activity is gathered and returned when IBS op sampling is enabled 
and a load operation misses in both the L1 data cache and the L2 cache. The IbsOpData2 register 
returns information from the Northbridge. Data in this register is valid when a load misses in both the 
L1 data cache and the L2 cache. The fields in the IbsOpData2 register are summarized in Table 23.

It is important to emphasize that Northbridge data are only valid for load operations. Store operations 
may retire before they read data into the local cache. Thus, a subset of IBS information is either 
invalid or unreliable for store operations because a store operation may have retired and caused a 
sampling interrupt before store-related Northbridge events even occur. This behavior affects the 
validity of IBS data cache miss latency, which is valid only for load operations. Software developers 
should filter out NB and IBS data cache miss latency for store operations and report data only for load 
operations.

The NbIbsReqDstProc bit indicates whether the request was serviced locally or by a remote 
processor. Local service is typically faster. The NbIbsReqSrc field indicates the data source which 
satisfied the request, as described in Table 24. The NbIbsReqCacheHitSt indicates the cache state 
(modified or owned) when the data source type is “Cache.”

Table 23. IbsOpData2 Register Fields
Flag/field Purpose/Meaning

NbIbsReqCacheHitSt Modified state (0), Owned state (1)
NbIbsReqDstProc Request serviced by local (0) or remote (1) memory
NbIbsReqSrc Data source (see Table 24)
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IBS Northbridge event data may be interpreted according to Table 25.

F.5 Software-based analysis
The approach to event computation and reporting described in this section is based upon concepts and 
methods that are used to compute and report results obtained through conventional performance 
counter sampling. This approach has two main advantages:

• Software developers and other end users are already familiar with performance counter sampling 
and the hardware events that are measured and reported.

• Profilers and other software tools can exploit existing data structures and methods to post-process 
IBS sample data and to correlate events with instructions, source lines, functions, modules, 
threads and processes.

The main disadvantage is that the full flexibility of analysis afforded by IBS data is not fully realized. 
Unfortunately, description of alternative approaches is beyond the scope of this paper.

Table 24. Northbridge Request Data Source Field

NbIbsReqSrc Northbridge Request Data Source
0x0 No valid status
0x1 Data returned from local L3 cache
0x2 Data returned from local CPU cache in another core or remote L1/L2/L3 cache
0x3 Data returned from DRAM
0x4 Reserved
0x5 Reserved

0x6 Reserved

0x7 Data returned from MMIO/configuration space/PCI/APIC

Table 25. IBS Northbridge Event Data
NbIbsReqSrc NbIbsReqDstProc Meaning

0 0 Northbridge data is invalid
0 1 Northbridge data is invalid
1 0 Request served from local L3 cache
1 1 N/A
2 0 Request served from L1 or L2 of a local core
2 1 Request served from L1 or L2 of a remote core or a 

remote L3 cache
3 0 Request served from local DRAM
3 1 Request served from remote DRAM
7 0 Request served from local MMIO/Config/PCI/APIC
7 1 Request served from remote MMIO/Config/PCI
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F.5.1 Derived events and post-processing
The method described here converts IBS sample data into a set of derived event counts. A derived 
event is a specific, useful hardware condition that can be determined through a combination of one or 
more IBS event flags or values (such as the translation page size, tag-to-retire count, etc.) Example 
derived events include IBS instruction cache miss, IBS mispredicted branch and IBS data cache miss. 

Caution: End users should be discouraged from making direct comparison between IBS derived 
events and the performance counter events with the same or similar names because the 
sampling method and populations are different. Performance counter sampling is 
triggered by an event configured for a counter. IBS fetch sampling is triggered by 
completed fetches and IBS op sampling is triggered by processor cycles. Also, PMC 
execution events may be triggered by any op while IBS op events are counted only for 
retired ops.

The process of converting IBS sample data to derived event counts is straightforward. An IBS fetch 
sample may be represented as shown in Table 26.

Each column represents a hardware flag or value returned with an IBS sample. The virtual fetch 
address can be correlated back to an instruction in a software process using the same well-known 
techniques employed in conventional performance counter sampling. To visualize the process of 
computing derived events, consider the ten IBS fetch samples arranged as a 2-D table, where each 
row is a sample:

Table 26. An IBS Fetch Sample
Virtual fetch 

address IbsIcMiss IbsL1TlbMiss IbsL2TlbMiss IbsComp …

0x04000020 1 0 1

Table 27. 2-D Table of IBS Fetch Samples
Virtual fetch 

address IbsIcMiss IbsL1TlbMiss IbsL2TlbMiss IbsComp …

0x0400020 1 1 0 1
0x0400040 0 0 0 1
0x0400020 0 0 0 1
0x0400040 0 0 0 1
0x0400020 0 0 0 0
0x0400040 0 0 0 1
0x0400040 0 0 0 1
0x0400020 0 0 0 1
0x0400044 0 0 0 1
0x0400080 1 0 0 1
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To compute the three derived events,

– IBS instruction cache miss,

– IBS L1 ITLB miss, L2 ITLB hit,

– IBS fetch completed,

scan sequentially through the table from top to bottom and count the number of occurrences of the 
hardware conditions associated with the three events. (In practice, post-processing software must 
keep a running count for all derived events.) In the case of IBS instruction cache miss, for example, 
there are two samples with the IbsIcMiss = 1 condition, so the total count reported for this event is 
two. The number of IBS fetch completed events is nine.

The IBS L1 ITLB miss, L2 ITLB hit event requires the use of a slightly more complicated condition, 
(IbsL1TlbMiss & ~IbsL2TlbMiss), but the counting procedure is the same. The count reported for 
this event is one, since only one IBS fetch sample satisfies the condition.

Derived events can be placed into a histogram to obtain a program profile. Figure 18 shows the 
histogram for the IBS fetch completed derived event.

Figure 18. Histogram for the IBS Fetch Completed Derived Event

The following sections define derived events for IBS fetch and op data.

F.5.2 Derived events for IBS fetch data
Performance analysis tools (e.g., a profiler) can combine event flags to derive new events. Table 28 
illustrates the kinds of events that can be derived from the basic flags and fields provided in an IBS 
fetch sample.

Table 28. New Events Derived from Combined Event Flags 
ID Name Derivation

F000 IBS fetch samples Number of all IBS fetch samples
F001 IBS fetch killed Number of killed IBS fetch samples

0

1

2

3

4

5

0x0400020 0x0400040 0x0400044 0x0400060 0x00080

IBS fetch completed
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The ID numbers in Table 28 are the event identifiers that the AMD CodeAnalyst™ profiler uses to 
identify a derived event.

The first five derived events break down the IBS fetch samples by five broad categories. 

• IBS fetch samples is the number of all IBS fetch samples that were taken. 

• IBS fetch killed is the number of all IBS fetch samples that were killed before ITLB/IC access 
IbsL1TlbMiss, IbsL2TlbMiss, IbsPhyAddrValid, IbsFetchComp and IbsIcMiss are all clear. 

• IBS fetch attempted is the number of IBS fetch samples minus the number of IBS fetch killed 
samples.

• IBS fetch completed is the number of attempted fetches that completed, i.e., delivered instruction 
bytes to the decoder.

• IBS fetch aborted is the number of attempted fetches that did not complete.

It should be noted that the notion of an attempted fetch here excludes killed fetches. Killed fetches do 
not provide useful analytical information and are filtered out. Killed fetches are not included in the 
IBS fetch aborted derived event.

For the remaining derived events, an occurrence of an event is tallied if it meets the specified 
condition in the Derivation column.

The IbsPhysAddrValid bit is needed to form the derived event “IBS L1 ITLB hit” because the 
condition (IbsL1TlbMiss=0 & IbsL2TlbMiss=0) alone is not sufficient to determine whether the 
attempted fetch hit in both the L1 and L2 ITLB or that the attempted fetch completed the initial ITLB 
access. When IbsPhysAddrValid is set, it indicates that address translation completed and produced a 
physical address. This bit must also be used to detect valid page translation information.

F002 IBS fetch attempted Number of non-killed IBS fetch samples
F003 IBS fetch completed IbsFetchComp
F004 IBS fetch aborted ~IbsFetchComp
F005 IBS L1 ITLB hit ~IbsL1TlbMiss & IbsPhyAddrValid
F006 IBS L1 ITLB miss, L2 ITLB hit IbsL1TlbMiss & ~IbsL2TlbMiss
F007 IBS L1 ITLB miss, L2 ITLB miss IbsL1TlbMiss & IbsL2TlbMiss
F008 IBS instruction cache miss IbsIcMiss
F009 IBS instruction cache hit IbsFetchComp && ~IbsIcMiss
F00A IBS 4K page translation IbsL1TlbPgSz=0 & IbsPhyAddrValid
F00B IBS 2M page translation IbsL1TlbPgSz=1 & IbsPhyAddrValid
F00C IBS 1G page translation IbsL1TlbPgSz=2 & IbsPhyAddrValid
F00D Reserved
F00E IBS fetch latency IbsfetchLat

Table 28. New Events Derived from Combined Event Flags  (Continued)
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F.5.3 Derived Events for all Ops
A derived event is an event that is formed using a combination of IBS event flags and field values. 
The quantity of each derived event is computed and reported to end users by profiling software.

There are three derived events that are defined for all ops regardless of type:

The IBS all op samples derived event is a count of all IBS op samples taken without regard to op 
type (i.e., undifferentiated, branch/return/resync.) Similarly, the IBS tag to retire cycles and 
IBS completion to retire cycles are computed across all IBS op samples for a given IP.

F.5.4 Derived events for IBS branch/return/resync ops
The following derived events measure the behavior of branch, return and resync ops:

All events in Table 30 (F103-F109) are applicable only for ops that follow AMD64 branch semantics 
and therefore do not include micro-code branches.

F.5.5 Derived events for IBS load/store operations
Table 31 summarizes derived events for ops that perform load and/or store operations. With the 
exception of the first three derived events, the condition (IbsLdOp | IbsStOp) is assumed.

Table 29. Derived Events for All Ops
ID Name Derivation

F100 IBS all op samples Number of all IBS op samples
F101 IBS tag to retire cycles Sum of all tag to retire cycles
F102 ibs completion to retire cycles Sum of all completion to retire cycles

Table 30. Derived Events to Measure Branch, Return and Resync Ops
ID Name Derivation

F103 IBS branch op IbsOpBrnRet
F104 IBS mispredicted branch op IbsOpBrnRet & IbsOpBrnMisp
F105 IBS taken branch op IbsOpBrnRet & IbsOpBrnTaken
F106 IBS mispredicted taken branch op IbsOpBrnRet & IbsOpBrnTaken & 

IbsOpBrnMisp
F107 IBS return op IbsOpReturn
F108 IBS mispredicted return op IbsOpReturn & IbsOpMispReturn
F109 IBS resync op IbsOpBrnResync                     
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The IBS all load/store ops derived event is a count of all IBS op samples that involve either a load 
and/or store operation. The IBS Load Ops and IBS Store Ops events break out the number of load 
and store operations performed by all sampled ops.

Detection of L1 and L2 DTLB miss events are more easily decoded than the similar events in IBS 
fetch samples, since all sampled ops are retired ops. Retired ops do not include speculative activity. 
All address translations must eventually complete in the L1 DTLB. Thus, the IBS translation page 
size flags for the L1 DTLB are always set according to the size of the completed translation. A 4K 
page L1 DTLB translation occurrs when both the IbsDcL1tlbHit2M and IbsDcL1tlbHit1G bits are 
clear. The L2 DTLB translation page size is valid when IbsDcL1tlbMiss is set. A 4K page L2 DTLB 

Table 31. Derived Events for Ops That Perform Load and/or Store Operations 
ID Name Derivation

F200 IBS All Load/Store Ops IbsLdOp | IbsStOp
F201 IBS Load Ops IbsLdOp
F202 IBS Store Ops IbsStOp
F203 IBS L1 DTLB Hit ~IbsDcL1tlbMiss & IbsDcLinAddrValid
F204 IBS L1 DTLB Miss L2 DTLB Hit IbsDcL1tlbMiss & ~IbsDcL2tlbMiss
F205 IBS L1 DTLB Miss L2 DTLB Miss IbsDcL1tlbMiss & IbsDcL2tlbMiss
F206 IBS DC Miss IbsDcMiss
F207 IBS DC Hit ~IbsDcMiss
F208 IBS Misaligned Access IbsDcMisAcc
F209 IBS Bank Conflict On Load Op IbsDcLdBnkCon
F20A Reserved
F20B IBS Store to Load Forwarded IbsDcStToLdFwd
F20C IBSStore to Load Forwarding Cancelled IbsDcStToLdCan
F20D IBS UC memory access IbsDcUcMemAcc
F20E IBS WC memory access IbsDcWcMemAcc
F20F IBS locked operation IbsDcLockedOp
F210 IBS MAB hit IbsDcMabHit
F211 IBS L1 DTLB 4K page ~IbsDcL1tlbHit2M & ~IbsDcL1tlbHit1G & 

IbsDcLinAddrValid
F212 IBS L1 DTLB 2M page IbsDcL1tlbHit2M & IbsDcLinAddrValid
F213 IBS L1 DTLB 1G page IbsDcL1tlbHit1G & IbsDcLinAddrValid
F214 Reserved
F215 IBS L2 DTLB 4K page ~IbsDcL2tlbMiss & IbsDcL1tlbMiss & 

~IbsDcL1tlbHit2M & lbsDcLinAddrValid
F216 IBS L2 DTLB 2M page ~IbsDcL2tlbMiss & IbsDcL1tlbMiss & 

IbsDcL1tlbHit2M & lbsDcLinAddrValid
F217 Reserved
F218 Reserved
F219 IBS DC miss load latency IbsDcMissLat when IbsLdOp & IbsDcMiss
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translation occurrs when both the IbsDcL2tlbMiss and IbsDcL2tlbHit2M are clear. Checking the 
IbsDcLinAddrValid bit is necessary to be sure that an address translation was attempted.

The IBS DC miss load latency is only valid for load operations. Miss load latency should only be 
tallied by software when the IbsLdOp bit is set.

The remaining derived events are simply the number of IBS op samples for which an event bit is set 
(or clear), e.g., IBS MAB hit is tallied when the IbsDcMabHit bit is set.

F.6 Derived Events for Northbridge Activity
The IBS Northbridge derived events measure the number of local and remote accesses (without 
regard to data source) and measure the number of local and remote accesses by data source. The event 
derivations in Table 32 assume that the overall Northbridge IBS data validity condition:

IbsLdOp & IbsDcMiss & (NbIbsReqSrc = 0)

is true.

These derived events correspond to the seven kinds of Northbridge activity described in Section 4.5.

Table 32. IBS Northbridge Derived Events
ID Name Derivation

F240 IBS NB local ~NbIbsReqDstProc
F241 IBS NB remote NbIbsReqDstProc
F242 IBS NB local L3 NbIbsReqSrc=0x1 & ~NbIbsReqDstProc
F243 IBS NB local L1/L2 (intercore) NbIbsReqSrc=0x2 & ~NbIbsReqDstProc
F244 IBS NB remote L1/L2/L3 cache NbIbsReqSrc=0x2 &  NbIbsReqDstProc
F245 IBS NB local DRAM NbIbsReqSrc=0x3 & ~NbIbsReqDstProc
F246 IBS NB remote DRAM NbIbsReqSrc=0x3 &  NbIbsReqDstProc
F247 IBS NB local other NbIbsReqSrc=0x7 & ~NbIbsReqDstProc
F248 IBS NB remote other NbIbsReqSrc=0x7 &  NbIbsReqDstProc
F249 IBS NB cache M state NbIbsReqSrc=0x2 & ~NbIbsReqCacheHitSt
F24A IBS NB cache O state NbIbsReqSrc=0x2 &  NbIbsReqCacheHitSt
F24B IBS NB local latency IbsDcMissLat when ~NbIbsReqDstProc
F24C IBS NB remote latency IbsDcMissLat when  NbIbsReqDstProc
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