To: Bill Sisk s_param_2port From: Jon Hagen Date: Aug. 13, 2004 Subject: Reciprocal 2-port junctions	file:
If a network is <i>reciprocal</i> , then $S_{ij} = S_{ji}$. 1)	(2 equations - real part and imag. part)
leaving three complex parameters, S_{11} , S_{12} , and S_{22} (six real parameters).	
I. Lossless Case	
For a lossless 2-port $ S_{11} ^2 + S_{21} ^2 = 1$ 2)	(1 equation, from conservation of energy when only Port 1 is excited)
$ \mathbf{S}_{22} ^2 + \mathbf{S}_{21} ^2 = 1 $ 3)	(1 equation, from conservation of energy when only Port 2 is excited)
These two equations reduce the six real parameters to four real parameters. A final relation is	

$$S_{11} S_{12}^{*} + S_{21} S_{22}^{*} = 0$$
 4) (from conservation of energy,
when both ports are excited).

This appears to be two equations (real and imaginary parts), but actually amounts to only one equation. To see this (reference: R.E. Collin, Foundations for microwave engineering), note first that Equations 2 and 3 imply that $|S_{11}| = |S_{22}|$. We can therefore express the S parameters in polar form as $S_{11} = |S_{11}| e^{-j\theta 1}$, $S_{22} = |S_{11}| e^{-j\theta 2}$, and $S_{21} = (1 - |S_{11}|)^{\frac{1}{2}} e^{-j\phi}$. Putting these expressions into Equation 4 gives

$$(|S_{11}|)(1 - |S_{11}|)^{\frac{1}{2}} [e^{-j(\theta - \phi)} + e^{-j(\phi - \theta 2)}] = 0$$
 5)

The term in the square brackets must be zero, i.e.

 $(\theta 1 - \varphi) = (\varphi - \theta 2) + \pi + 2n \pi$ where n is a pos. or neg. integer 6)

Thus Equation 4 boils down to a single equation and the four real parameters are finally reduced to just **three real parameters**. Any lossless 2-port can therefore be modeled (for one frequency) as a network made of **three elements**, which can be capacitors, inductors, and transmission lines. As an example of such a network, suppose we start with the capacitor, which, when paralleled with 50 ohms of resistance, produces an impedance Z, such that $|(1-Z)/(1+Z)| = |S_{11}|$. Let this capacitor be a shunt element to ground. To its left, install a cable with the length needed to get the correct phase for S_{11} . To its right, install a cable whose length produces the specified phase for S_{22} .