# **OPERATING MANUAL**

# **MODEL 7807**

XMC PCI Express Carrier



Pentek, Inc. One Park Way Upper Saddle River, NJ 07458 (201) 818–5900 http://www.pentek.com

Copyright © 2014–2015

Manual Part No: 800.78070

Rev: 1.0 – November 6, 2015

#### Manual Revision History

| <u>Date</u> | <u>Revision</u> | <u>Comments</u>                                             |
|-------------|-----------------|-------------------------------------------------------------|
| 7/14/14     | 0.1             | Initial release.                                            |
| 11/6/15     | 1.0             | Sect 2.5.6, updated GPIO connector mating cable identifier. |

#### **Warranty**

Pentek warrants that all products manufactured by Pentek conform to published Pentek specifications and are free from defects in materials and workmanship for a period of one year from the date of delivery when used under normal operating conditions and within the service conditions for which they were furnished. The obligation of Pentek arising from a warranty claim shall be limited to repairing or at its option, replacing without charge, any product that in Pentek's sole opinion proves to be defective within the scope of the warranty. Pentek must be notified in writing of the defect or nonconformity within the warranty period and the affected product returned to Pentek within thirty days after discovery of such defect or nonconformity. Buyer shall prepay shipping charges, taxes, duties and insurance for products returned to Pentek for warranty service. Pentek shall pay for the return of products to buyer except for products returned from another country.

Pentek shall have no responsibility for any defect or damage caused by improper installation, unauthorized modification, misuse, neglect, inadequate maintenance, or accident, or for any product that has been repaired or altered by anyone other than Pentek or its authorized representatives.

The warranty described above is buyer's sole and exclusive remedy and no other warranty, whether written or oral, is expressed or implied. Pentek specifically disclaims fitness for a particular purpose. Under no circumstances shall Pentek be liable for any direct, indirect, special, incidental, or consequential damages, expenses, losses or delays (including loss of profits) based on contract, tort, or any other legal theory.

#### **Copyrights**

With the exception of those items listed below, the contents of this publication are Copyright © 2014–2015, Pentek, Inc. All Rights Reserved. Contents of this publication may not be reproduced in any form without written permission.

#### **Trademarks**

Pentek, GateFlow, and ReadyFlow are registered trademarks or trademarks of Pentek, Inc.

PCI, PCI Express, PCIe, and PCI–SIG are trademarks or registered trademarks of PCI–SIG. PLX Technology and the PLX logo are registered trademarks of PLX Technology, Inc. FireFly is a trademark of Samtec, Inc.

# Table of Contents

# Page

# Chapter 1: Model 7807 PCIe Carrier

| 1.1 | General Description                                | 5 |
|-----|----------------------------------------------------|---|
| 1.2 | Features                                           | 5 |
| 1.3 | Principle of Operation                             | 5 |
| 1.4 | Block Diagram                                      | 6 |
|     | Figure 1–1: Model 7807 Carrier Board Block Diagram | 6 |
| 1.5 | Specifications                                     | 7 |

# Chapter 2: Installation and Connections

| 2.1 | Inspec   | tion                                                                 | 9  |
|-----|----------|----------------------------------------------------------------------|----|
|     | Figure   | 2-1: PCIe Carrier Assembly                                           | 9  |
| 2.2 | Carrie   | Jumper Settings                                                      | 10 |
|     | Figure   | 2-2: Model 7807 PCIe Carrier PCB Connector Side - Jumpers & Switches | 10 |
|     | Table    | 2–1: JTAG Signal Select – Jumper Blocks J18, J19, J20, J21, J22      | 11 |
| 2.3 | Carrie   | Switch Settings                                                      | 12 |
|     | Table    | 2–2: XMC Modes – Switch SW1                                          | 12 |
| 2.4 | Carrie   | r LEDs                                                               | 13 |
|     | Figure   | 2-3: Model 7807 PCIe Carrier PCB Solder Side, LEDs                   | 13 |
| 2.5 | Carrier  | Connectors                                                           | 14 |
|     | 2.5.1    | Power Connector                                                      | 14 |
|     | 2.5.2    | JTAG Connector                                                       | 14 |
|     |          | Table 2–3: JTAG J4 Connector                                         | 14 |
|     | 2.5.3    | Fan Connector                                                        | 14 |
|     |          | Figure 2–4: PCIe Carrier Block Diagram                               | 15 |
|     | 2.5.4    | XMC Connectors                                                       | 15 |
|     | 2.5.5    | PMC Connector                                                        | 15 |
|     | 2.5.6    | GPIO Connector                                                       | 16 |
|     |          | Table 2–4: GPIO Connector Pins                                       | 16 |
|     | 2.5.7    | Gigabit Serial I/O Connectors                                        | 17 |
|     |          | Table 2–5: Serial I/O Connectors J24, J25 Pins                       | 17 |
|     | 2.5.8    | Gigabit Serial Power & Control Connectors                            | 18 |
|     |          | Table 2–6: Power & Control Connectors J26, J27 Pins                  | 18 |
| 2.6 | Installi | ng XMC Module onto Model 7807 Carrier                                | 19 |
|     | Figure   | 2–5: Carrier Connections                                             | 19 |
|     | Figure   | 2–6: Carrier Mounting Screws                                         | 19 |
| 2.7 | Installi | ng the Model 7807 Carrier in a Personal Computer                     | 20 |

# Table of Contents

Page

This page is intentionally blank

# Chapter 1: Model 7807 PCIe Carrier

# 1.1 General Description

The Pentek Model 7807 is a PCI Express<sup>®</sup> (PCIe<sup>®</sup>) carrier that accepts one Pentek XMC module. It attaches directly to motherboards with half or full length PCIe bus slots for installation in various PCs, blade servers, and computer systems. The 7807 Carrier offers a variety of I/O solutions including external Gigabit Serial connectors for additional XMC I/O and general purpose I/O for PMC P14.

### 1.2 Features

- □ Hosts one XMC module
- □ High–speed PCI Express interface up to x8
- Optional Dual Gigabit Ethernet interfaces
- □ Optional External Gigabit Serial I/O Interfaces for XMC interface
- General Purpose I/O for PMC P14 connectivity

# **1.3 Principle of Operation**

The Model 7807 carrier is a baseboard for XMC modules, which conforms to the standard height, half–length PCI Express Add–In Card format as per PCI Express Electro– mechanical Specification, Rev. 2.0.

The 7807 XMC module site is equipped with a gigabit switched fabric connector (J15) to support an XMC module. This connector provides one x8 or two x4 full–duplex serial ports, allowing high–speed data transfer to and from the PCIe bus. An XMC secondary P16 connector is provided to support Xilinx Aurora, Serial RapidIO or PCIe interfaces. This connector provides two x4 Gigabit Serial I/O to two x4 full–duplex serial ports.

Two Samtec FireFly<sup>™</sup> serial connectors (SER RX/TX) are included on the 7807 Carrier, providing access to both x4 gigabit serial paths from the XMC module. These connectors can be used for optical communication between XMC modules on multiple 7807 Carrier baseboards. This allows the connectors to support additional protocol installed on the XMC modules such as Xilinx Aurora or Serial RapidIO.

The PMC site provides a general purpose (GPIO) connector for user I/O to and from an installed module's P14 connector. This GPIO connector can also be used to support optional Gigabit Ethernet (GMII format).

# 1.4 Block Diagram

The following is a simplified block diagram of the Model 7807 PCI Express Carrier, showing the interface to Option 110 FireFly optical modules.



# 1.5 Specifications

| XMC Interface                 |                                                               |
|-------------------------------|---------------------------------------------------------------|
| Compliance:                   | VITA 42.0 XMC Standard                                        |
| Primary XMC Connector:        | J15                                                           |
| P15 Connectivity:             | One x8 PCIe link direct to the PCIe bus                       |
|                               | XMC pins MSDA & MSCL connected to PCA9535                     |
|                               | for control inputs to FireFly connectors                      |
| Speed:                        | PCIe link supports Gen3 data rates                            |
| Secondary XMC Connector:      | J16                                                           |
| P16 Connectivity:             | One x8 gigabit serial I/O link routed as follows:             |
| -                             | Eight serial receive lines directly wired from                |
|                               | FireFly serial connector <b>J24</b> ( <b>SER RX</b> )         |
|                               | Eight serial transmit lines directly wired to                 |
|                               | FireFly serial connector <b>J25</b> (SER TX)                  |
| Speed:                        | x8 link supports data rates up to 5 Gbps                      |
| Protocol:                     | VITA 42.2 XMC Serial RapidIO Protocol                         |
|                               | VITA 42.3 XMC PCI Express Protocol                            |
|                               | VITA 42.5 Aurora Pin Assignments                              |
| High–Speed Serial Interface   | 2                                                             |
| Standard:                     | Samtec FireFly copper connectors                              |
| Option 110:                   | Samtec FireFly active optical modules                         |
| -                             |                                                               |
| PMC Interface                 |                                                               |
| PMC Connector:                | 64-pin PMC standard connector, <b>J14</b>                     |
| J14 Connectivity:             | Directly wired to <b>GPIO</b> connector to allow connectivity |
| 2                             | to XMC module <b>P14</b> connector for user I/O               |
|                               |                                                               |
| Power                         |                                                               |
| No Options:                   | 6.35 Watts typ (9.31W max)                                    |
| -                             |                                                               |
| Physical (PCIe Half-length ad | d–in card)                                                    |
| Height:                       | 111.15 mm (4.376 in) (including connectors)                   |
| Length:                       | 167.65 mm (6.60 in)                                           |
| Weight:                       | 110 grams (3.9 oz)                                            |
| -                             | -                                                             |
| Environmental – Commercial    |                                                               |
| <b>Operating Temperature:</b> | 0° to 50°C                                                    |
| Storage Temperature:          | -20° to 90°C                                                  |
| <b>Relative Humidity:</b>     | 0 to 95% non-condensing                                       |

This page is intentionally blank

# **Chapter 2: Installation and Connections**

# 2.1 Inspection

After unpacking, inspect the unit carefully for possible damage to connectors or components. If any damage is discovered, contact Pentek immediately at (201) 818–5900. Please save the shipping container and packing material in case reshipment is required.

The following figure illustrates the Model 7807 PCIe Carrier as shipped.



As shipped from the factory, all jumpers and DIP switches are installed in default positions on your board. Refer to Section 2.2 for the jumper settings and Section 2.3 for the DIP switch settings on the 7807 PCIe Carrier PCB.

# 2.2 Carrier Jumper Settings

The following subsections describe user operating parameters that are set by shorting jumpers on the Model 7807 PCIe Carrier PCB. As shipped from the factory, several jumpers on the carrier PCB are installed in default positions on your board. These jumpers have been factory set for the configuration shipped. The default operating parameters they select may or may not meet your requirements. Before installing your 7807 onto a PCIe baseboard, review the following subsections to determine whether you need to change any of these settings.

The shorting jumpers used on the Model 7807 PCB are for 0.020" (0.51 mm) square pins spaced on 0.079" (2.00 mm) centers. These jumpers are NorComp part number 810–002–LP1R001, or equivalent. Pentek's part number for these jumpers is 356.00015.

The following shows the location of all jumpers and switches on the connector side of Model 7807 PCB. See Table 2–1 on the next page for description of these jumper blocks.



Refer to Section 2.3 for the DIP switch settings on the carrier PCB.

# 2.2 Carrier Jumper Settings (continued)

Jumper blocks **J18**, **J19**, **j20**, **j21**, and **J22** select the signal source for JTAG operation, from either the carrier's **J4** JTAG connector (Section 2.5.2) or the carrier's PCIe connector. The following table shows the jumper settings.

| Table 2–1: JTAG Signal Select – Jumper Blocks J18, J19, J20, J21, J22                                                              |                                         |              |                              |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------|------------------------------|--|--|--|
| Jumper Block                                                                                                                       | k JTAG Signal Jumper Pins Signal Source |              |                              |  |  |  |
| 11.9                                                                                                                               | TMS (Test                               | Pins 1 – 3 * | Use JTAG J4 connector TMS    |  |  |  |
| 510                                                                                                                                | Mode Select)                            | Pins 2 – 4   | Use PCIE connector TMS       |  |  |  |
| 110                                                                                                                                | TCK (Test                               | Pins 1 – 3 * | Use JTAG J4 connector TCK    |  |  |  |
| 519                                                                                                                                | Clock)                                  | Pins 2 – 4   | Use PCIE connector TCK       |  |  |  |
| 120                                                                                                                                | TDI (Test Data                          | Pins 1 – 3 * | Use JTAG J4 connector TDI    |  |  |  |
| J20                                                                                                                                | ln)                                     | Pins 2 – 4   | Use PCIE connector TDI       |  |  |  |
| 121                                                                                                                                | TDO (Test                               | Pins 1 – 3 * | Use JTAG J4 connector TDO    |  |  |  |
| JZT                                                                                                                                | Data Out)                               | Pins 2 – 4   | Use PCIE connector TDO       |  |  |  |
| 122                                                                                                                                | TRST (Test                              | Pins 1 – 3   | Use JTAG J4 connector TRST_N |  |  |  |
| JZZ                                                                                                                                | Reset)                                  | Pins 2 – 4 * | Use PCIe connector PERST_N   |  |  |  |
| * Factory Default Setting – For proper JTAG operation, all jumpers<br>should be set to 1–3 except J22, which should be set to 2–4. |                                         |              |                              |  |  |  |



The user should not change jumpers that are not described in these pages these are reserved for factory test and setup purposes only.

# 2.3 Carrier Switch Settings

The following paragraphs describe operating parameters that are set by dipswitches on the Model 7807 carrier PCB. See Figure 2–2 for location of these switches on the PCB. Refer to Section 2.2 for the jumper settings on the carrier PCB.

As shipped from the factory, all switches on the carrier PCB are set in default positions on your board. These switches have been factory set for the configuration shipped. The default operating parameters they select may or may not meet your requirements. Before installing your 7807 assembly onto a PCIe baseboard, review the following table to determine whether you need to change any of these settings.

Dipswitch **SW1** selects XMC interface modes for the XMC module. The following table describes the different mode selections for each switch position.

| Table 2–2: XMC Modes – Switch SW1 |                                                |                                                                                                                                                                  |                                                                                       |  |  |  |  |
|-----------------------------------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--|--|--|--|
| Switch                            | OFF Function                                   | ON Function                                                                                                                                                      | Description                                                                           |  |  |  |  |
| SW1-1                             | GA0 is pulled to 3.3V on the XMC connector *   | Ties GA0 to GND on the<br>XMC connector                                                                                                                          | Sets bit 0 of the XMC onboard<br>EEPROM base address                                  |  |  |  |  |
| SW1-2                             | GA1 is pulled to 3.3V on the XMC connector *   | Ties GA1 to GND on the<br>XMC connector                                                                                                                          | Sets bit 1 of the XMC onboard<br>EEPROM base address                                  |  |  |  |  |
| SW1-3                             | GA2 is pulled to 3.3V on the XMC connector *   | Ties GA2 to GND on the XMC connector                                                                                                                             | Sets bit 2 of the XMC onboard<br>EEPROM base address                                  |  |  |  |  |
| SW1-4                             | MVMRO is pulled to 3.3V on the XMC connector * | Ties MVMRO on the XMC connector to GND                                                                                                                           | When MVMRO is pulled high to 3.3V,<br>the XMC onboard EEPROM cannot<br>be written to. |  |  |  |  |
| SW1–5                             | ROOT0 is pulled to 3.3V on the XMC connector * | When ROOT0 is pulled to GND, the<br>XMC card can function as a root<br>complex and assign base addresses<br>to other devices on the PCI express<br>and PCI buses |                                                                                       |  |  |  |  |
| SW1-6                             | Not used                                       |                                                                                                                                                                  |                                                                                       |  |  |  |  |
| SW1-7                             | Not used                                       |                                                                                                                                                                  |                                                                                       |  |  |  |  |
| SW1-8                             | 1–8 Not used                                   |                                                                                                                                                                  |                                                                                       |  |  |  |  |
|                                   | * Factor                                       | y Default Setting – all Switc                                                                                                                                    | hes OFF                                                                               |  |  |  |  |

The following paragraphs describe the LEDs, labeled **Dnn** on the solder side of the Model 7807 carrier PCB, that provide power operating status for the board.



The following green LEDs indicate power applied to board resources.

| LED | USE                                                                               |  |  |  |  |  |
|-----|-----------------------------------------------------------------------------------|--|--|--|--|--|
| D3  | Green LED indicates the presence of +12V at the 6-pin PCIe Power Connector (J23)  |  |  |  |  |  |
| D4  | Green LED indicates the presence of +3.3V from the PCIe bus (motherboard)         |  |  |  |  |  |
| D5  | Green LED indicates the presence of +3.3V from the onboard Power Supply           |  |  |  |  |  |
| D6  | Green LED indicates the presence of +12V after the Fuse F1 *                      |  |  |  |  |  |
|     | * If D3 is illuminated and D6 is not, this indicates the fuse <b>F1</b> is blown. |  |  |  |  |  |

# 2.5 Carrier Connectors

The following subsections describe the power and signal connectors on the Model 7807 carrier. Refer to Figures 2–1 and 2–2 for location of the connectors on the PCB.

### 2.5.1 **Power Connector**

The PCIe Carrier uses a 6–pin power connector, labeled **J23**, to supply +12V power to the XMC mod– ule. This is a standard PCI Express power connector used in PCs with a PCI Express bus.

> Pins 1, 2, and 3 are +12 VDC Pins 4, 5, and 6 are ground



# **NOTE:** You **must** provide a power source to this connector or the XMC module will not operate.

Pentek includes a PCIe to Molex adapter cable (part # 002.21790) with the Model 7807 shipment.

### 2.5.2 JTAG Connector

The JTAG **J4** connector provides a connection to download programs and to perform boundary–scan tests on PCIe carrier devices. This connector is reserved for Pentek factory use only. The pinout for this 14–pin header is given in the following table.

| Table 2–3: JTAG J4 Connector |            |                                     |            |               |  |  |
|------------------------------|------------|-------------------------------------|------------|---------------|--|--|
| Signal                       | Pin Number |                                     | Pin Number | Signal        |  |  |
| Gnd                          | 1          | _                                   | 2          | +3.3 V        |  |  |
| Gnd                          | 3          | 1 • • 2                             | 4          | TMS           |  |  |
| Gnd                          | 5          | 3 • • 4                             | 6          | ТСК           |  |  |
| Gnd                          | 7          | 7                                   | 8          | TDO           |  |  |
| Gnd                          | 9          | 9 <b>• •</b> 10<br>11 <b>• •</b> 12 | 10         | TDI           |  |  |
| Gnd                          | 11         | 13 🔳 📕 14                           | 12         | TRST_N        |  |  |
| Gnd                          | 13         |                                     | 14         | No Connection |  |  |

### 2.5.3 Fan Connector

Connector **J8** on the PCIe carrier PCB provides a +12VDC power source for use by a cooling fan.

### 2.5 Carrier Connectors (continued)



The following is a simplified block diagram of the Model 7807 PCIe carrier.

#### 2.5.4 XMC Connectors

The XMC site on the carrier provides two XMC connectors, designated **J15** and **J16**. These connectors follow the VITA 42.0 XMC Switched Mezzanine Card Auxiliary Standard and VITA 42.3 XMC PCI Express Protocol Standard.

- J15 provides an x8 PCI Express link between the XMC module and the 7807 PCIe bus. For Option 110 optical interface, the XMC J15 MSDA and MSCL signals are used for control signals, through a Philips Semiconductors PCA9535 I/O Port, to the Samtec FireFly connectors. See Section 2.5.8 for the description of these control signals.
- J16 provides separate data links to two Samtec FireFly connectors (SER RX & SER TX) to support x8 gigabit serial user I/O, as illustrated above. See Section 2.5.7 for the pin mapping for the J16 to SER connections.

#### 2.5.5 PMC Connector

The XMC site on the carrier also provides a 64–pin PMC connector, designated **J14** on the 7807 PCB. **J14** provides 64 pins defined as 'User I/O' to support custom PMC **P14** connectivity. These pins are routed to a 68–pin connector on the rear edge of the 7807 PCB, identified as **GPIO**. Refer to Section 2.5.6 for the pin mapping of the PMC **P14** to **GPIO** connections.

# 2.5 Carrier Connectors (continued)

### 2.5.6 GPIO Connector

A 68–pin **GPIO** connector, labeled **J5** on the PCB, provides user I/O from the PMC **P14** connector, as described in Section 2.5.5. Cables of various lengths with the mating connector are available: Pentek Model 2147. The mating connector alone is Model 2147–999. The table below shows the connector pinout.

| Table 2–4: GPIO Connector Pins |     |            |     |            |     |               |  |
|--------------------------------|-----|------------|-----|------------|-----|---------------|--|
| PMC P4 Signal                  | Pin |            |     |            | Pin | PMC P4 Signal |  |
| GND                            | B1  |            |     |            | A1  | GND           |  |
| PMC_P4_PIN_1                   | B2  |            |     |            | A2  | PMC_P4_PIN_3  |  |
| PMC_P4_PIN_2                   | B3  |            |     |            | A3  | PMC_P4_PIN_4  |  |
| PMC_P4_PIN_5                   | B4  |            |     |            | A4  | PMC_P4_PIN_7  |  |
| PMC_P4_PIN_6                   | B5  | B1 🕨       | • • | A1         | A5  | PMC_P4_PIN_8  |  |
| PMC_P4_PIN_9                   | B6  | B2         | • • | A2         | A6  | PMC_P4_PIN_11 |  |
| PMC_P4_PIN_10                  | B7  | B3         | • • | A3         | A7  | PMC_P4_PIN_12 |  |
| PMC_P4_PIN_13                  | B8  | В4<br>В5   | ••• | A4<br>A5   | A8  | PMC_P4_PIN_15 |  |
| PMC_P4_PIN_14                  | B9  | B6         | • • | A6         | A9  | PMC_P4_PIN_16 |  |
| PMC_P4_PIN_17                  | B10 | B7         | ••• | A7         | A10 | PMC_P4_PIN_19 |  |
| PMC_P4_PIN_18                  | B11 | B9         | • • | A8<br>A9   | A11 | PMC_P4_PIN_20 |  |
| PMC_P4_PIN_21                  | B12 | B10        | • • | A10        | A12 | PMC_P4_PIN_23 |  |
| PMC_P4_PIN_22                  | B13 | B11<br>B12 |     | Α11<br>Δ12 | A13 | PMC_P4_PIN_24 |  |
| PMC_P4_PIN_25                  | B14 | B12        | • • | A12        | A14 | PMC_P4_PIN_27 |  |
| PMC_P4_PIN_26                  | B15 | B14        | • • | A14        | A15 | PMC_P4_PIN_28 |  |
| PMC_P4_PIN_29                  | B16 | B15<br>B16 |     | A15<br>A16 | A16 | PMC_P4_PIN_31 |  |
| PMC_P4_PIN_30                  | B17 | B17        | • • | A17        | A17 | PMC_P4_PIN_32 |  |
| PMC_P4_PIN_33                  | B18 | B18        | ••• | A18        | A18 | PMC_P4_PIN_35 |  |
| PMC_P4_PIN_34                  | B19 | B19<br>B20 | • • | A19<br>A20 | A19 | PMC_P4_PIN_36 |  |
| PMC_P4_PIN_37                  | B20 | B21        | • • | A21        | A20 | PMC_P4_PIN_39 |  |
| PMC_P4_PIN_38                  | B21 | B22<br>B23 |     | A22        | A21 | PMC_P4_PIN_40 |  |
| PMC_P4_PIN_41                  | B22 | B24        | • • | A24        | A22 | PMC_P4_PIN_43 |  |
| PMC_P4_PIN_42                  | B23 | B25        | • • | A25        | A23 | PMC_P4_PIN_44 |  |
| PMC_P4_PIN_45                  | B24 | B26<br>B27 |     | A26<br>A27 | A24 | PMC_P4_PIN_47 |  |
| PMC_P4_PIN_46                  | B25 | B28        | • • | A28        | A25 | PMC_P4_PIN_48 |  |
| PMC_P4_PIN_49                  | B26 | B29        | ••• | A29        | A26 | PMC_P4_PIN_51 |  |
| PMC_P4_PIN_50                  | B27 | B30<br>B31 | ••• | A30<br>A31 | A27 | PMC_P4_PIN_52 |  |
| PMC_P4_PIN_53                  | B28 | B32        | • • | A32        | A28 | PMC_P4_PIN_55 |  |
| PMC_P4_PIN_54                  | B29 | B33        | ••• | A33        | A29 | PMC_P4_PIN_56 |  |
| PMC_P4_PIN_57                  | B30 | 0.04       |     |            | A30 | PMC_P4_PIN_59 |  |
| PMC_P4_PIN_58                  | B31 |            |     |            | A31 | PMC_P4_PIN_60 |  |
| PMC_P4_PIN_61                  | B32 |            |     |            | A32 | PMC_P4_PIN_63 |  |
| PMC_P4_PIN_62                  | B33 |            |     |            | A33 | PMC_P4_PIN_64 |  |
| GND                            | B34 |            |     |            | A34 | GND           |  |

### 2.5 **Carrier Connectors** (continued)

#### 2.5.7 Gigabit Serial I/O Connectors

Two Samtec FireFly<sup>™</sup> PCB connectors, labeled **J24** and **J25**, provide gigabit serial I/O from the XMC **P16** connector, as described in Section 2.5.4. **J24** is **SER RX**, and **J25** is **SER TX**. The mating cable can be a FireFly copper cable, or, with Option 110, a FireFly active optical cable. The following tables show the pinouts of each connector.

| Table 2–5: Serial I/O Connectors J24, J25 Pins                                                                        |              |     |            |  |            |     |              |              |
|-----------------------------------------------------------------------------------------------------------------------|--------------|-----|------------|--|------------|-----|--------------|--------------|
| J24 – SER RX                                                                                                          | J25 – SER TX | Pin |            |  |            | Pin | J25 – SER TX | J24 – SER RX |
| GND                                                                                                                   | GND          | B1  |            |  |            | A1  | GND          | GND          |
| N/C                                                                                                                   | N/C          | B2  |            |  |            | A2  | N/C          | N/C          |
| N/C                                                                                                                   | N/C          | B3  |            |  |            | A3  | N/C          | N/C          |
| GND                                                                                                                   | GND          | B4  | B1         |  | A1<br>A2   | A4  | GND          | GND          |
| N/C                                                                                                                   | N/C          | B5  | B2<br>B3   |  | A3         | A5  | N/C          | N/C          |
| N/C                                                                                                                   | N/C          | B6  | B4         |  | A4<br>A5   | A6  | N/C          | N/C          |
| GND                                                                                                                   | GND          | B7  | В5<br>В6   |  | A6         | A7  | GND          | GND          |
| RX_DP_7+                                                                                                              | TX_DP_7+     | B8  | B7         |  | A7<br>A8   | A8  | TX_DP_6+     | RX_DP_6+     |
| RX_DP_7-                                                                                                              | TX_DP_7-     | B9  | B8<br>B9   |  | A9         | A9  | TX_DP_6-     | RX_DP_6-     |
| GND                                                                                                                   | GND          | B10 | B10        |  | A10<br>A11 | A10 | GND          | GND          |
| RX_DP_5+                                                                                                              | TX_DP_5+     | B11 | B11<br>B12 |  | A12        | A11 | TX_DP_4+     | RX_DP_4+     |
| RX_DP_5-                                                                                                              | TX_DP_5-     | B12 | B13        |  | A13<br>A14 | A12 | TX_DP_4–     | RX_DP_4-     |
| GND                                                                                                                   | GND          | B13 | B14<br>B25 |  | A15        | A13 | GND          | GND          |
| RX_DP_3+                                                                                                              | TX_DP_3+     | B14 | B16        |  | A16        | A14 | TX_DP_2+     | RX_DP_2+     |
| RX_DP_3-                                                                                                              | TX_DP_3-     | B15 | B17<br>B18 |  | A18        | A15 | TX_DP_2–     | RX_DP_2-     |
| GND                                                                                                                   | GND          | B16 | B19        |  | A19        | A16 | GND          | GND          |
| RX_DP_1+                                                                                                              | TX_DP_1+     | B17 |            |  |            | A17 | TX_DP_0+     | RX_DP_0+     |
| RX_DP_1-                                                                                                              | TX_DP_1-     | B18 |            |  |            | A18 | TX_DP_0-     | RX_DP_0-     |
| GND                                                                                                                   | GND          | B19 |            |  |            | A19 | GND          | GND          |
| RX_DP_[0:7] – Serial Receive data from XMC P16 connector<br>TX_DP_[0:7] – Serial Transmit data from XMC P16 connector |              |     |            |  |            |     |              |              |

Each of the FireFly I/O connectors has an associated power and control connector, which are described in Section 2.5.8 on the following page.

# Page 18

# 2.5 Carrier Connectors (continued)

## 2.5.8 Gigabit Serial Power & Control Connectors

Each of the FireFly connectors described in Section 2.5.7 has an associated power and control connector, labeled **J26** for **SER RX**, and **J27** for **SER TX**. These connectors provide power and control signals to the FireFly active optical modules when used for optical connections (Option 110).

**NOTE:** If a FireFly copper cable interface is used, these power and control signals are not used.

The following tables show the pinouts of each of these connectors, for the Samtec FireFly optical receive (**RX**) and transmit (**TX**) modules.

| Ta  | Table 2–6: Power & Control Connectors J26, J27 Pins |                 |  |  |  |  |  |
|-----|-----------------------------------------------------|-----------------|--|--|--|--|--|
| Pin | J26 – SER RX                                        | J27 – SER TX    |  |  |  |  |  |
| 1   | +3.3VCC                                             | +3.3VCC         |  |  |  |  |  |
| 2   | GND                                                 | GND             |  |  |  |  |  |
| 3   | OPT_RX_PRESENTL                                     | OPT_TX_PRESENTL |  |  |  |  |  |
| 4   | OPT_RX_SELECTL                                      | OPT_TX_SELECTL  |  |  |  |  |  |
| 5   | OPT_RX_INTL                                         | OPT_TX_INTL     |  |  |  |  |  |
| 6   | OPT_RX_RESETL                                       | OPT_TX_RESETL   |  |  |  |  |  |
| 7   | SDA                                                 | SDA             |  |  |  |  |  |
| 8   | SCL                                                 | SCL             |  |  |  |  |  |
| 9   | N/C                                                 | N/C             |  |  |  |  |  |
| 10  | +3.3VCC                                             | +3.3VCC         |  |  |  |  |  |

- The four OPT\_RX\_ and four OPT\_TX\_ signals are programmed from the TWSI (I<sup>2</sup>C) interface of the XMC J15 connector (XMC signals MSDA and MSCL), using a PCA9535 serial to parallel I/O port.
- The SDA and SCL signals are directly from the TWSI interface XMC **J15** connector (**MSDA** and **MSCL**).

Refer to Model 7807 Option 110 Addendum Manual, part # 800.78071, for description of the use and programming of these TWSI and control signals from the XMC module used on the 7807.

## 2.6 Installing XMC Module onto Model 7807 Carrier

- 1) Position your XMC module's front panel into the 7807 carrier's panel opening from behind the PCIe carrier slot panel.
- 2) Align the XMC module so that the connectors on the XMC card are aligned over the connectors on the PCIe carrier, illustrated below.



- 3) **GENTLY but firmly**, press down on the areas of the XMC opposite the connectors to fully seat the card's connectors into the carrier. The connectors on the XMC should connect smoothly with the corresponding connectors on the carrier.
- 4) From the solder side of the PCIe carrier, secure the XMC to the carrier by screwing the four pan-head Phillips mounting screws provided through the PCIe carrier into the XMC, as illustrated below.



# 2.7 Installing the Model 7807 Carrier in a Personal Computer

The Model 7807 PCIe Carrier is designed to operate in personal computers that provide PCI Express card slots. This carrier conforms to the standard height PCI Express Add–In Card format as per PCI Express Electromechanical Specification, Rev. 2.0.



Perform this installation at a static–controlled work workstation. Disconnect power from the PC before attempting to install this board.

- 1) Orient the personal computer on your static–controlled work surface such that the rear panel faces you, and remove the cover from the computer, to gain access to the PC's motherboard and its local bus connectors.
- 2) PCIe Bus connectors are usually black in color (as opposed to PCI bus connectors which are usually white, and VESA connectors which are usually brown), and are about 3<sup>1</sup>/<sub>2</sub>" long. Select a vacant x8 PCI express slot in which to install the Pentek 7800 assembly, and remove the blank expansion slot cover plate on the computer's rear panel located immediately to the RIGHT of the selected connector.
- **NOTE:** The Model 7807 Carrier can also be installed in an x16 PCI Express slot, but will only use the x8 connections of that slot.
- 3) Before touching the Model 7807 Carrier, touch the case of your computer's power supply, to discharge any static electrical charge that may have accumulated on you. Then, remove the Model 7807 Carrier from its anti–static packaging.
- 4) Install the 7807 board's connecting edge into the selected PCIe expansion socket.
- **NOTE:** Be certain that the card edge is properly aligned with the PCIe connector. Gentle downward pressure should be sufficient to fully seat the card edge in the connector.

#### DO NOT ATTEMPT TO FORCE THE CARD INTO THE SLOT!

If excessive force is necessary, then the card is probably misaligned. Damage to either the PC motherboard or the 7807 board will be the most likely result of attempts at forced installations.

- 5) The 7807 carrier board has a 6–pin power connector to supply the majority of power to the components (as illustrated in Section 2.5.1). This is a standard PCI Express power connector used in PCs with PCI Express buses. Plug a matching power connector from your PC's power supply into this power connector.
- 6) Secure the board to the PC chassis using a screw at the top of the PC slot panel.