
USER’S GUIDE

Manual Part Number: 800.48145 Rev: 2.4 − April 13, 2018

Pentek, Inc.
One Park Way

Upper Saddle River, NJ 07458
(201) 818−5900

http://www.pentek.com/

Copyright © 2017−2018

for Pentek’s Jade Family of Products

Version 2.4

Navigator BSP User’s Guide

Software License Agreement

Pentek grants to you a non−exclusive, non−transferable license to use the object code, source code, example programs and
related documentation in this package (“Licensed Materials”) on a single−user computer for development of executable
runtime code for Pentek products. All Licensed Materials received under a single Navigator “Subscription” may not be
used on more than one computer at the same time or otherwise network the Licensed Materials. Title of the Licensed
Materials is not transferred to you by this license. Any sub−license, assignment, or other transfer of the Licensed Materials
or the rights or obligations of this agreement without prior consent of Pentek is prohibited. Executable runtime code
generated through the proper use of the Licensed Materials for execution on Pentek products is not subject to, or restricted
by this agreement.

Software Limitations

Pentek does not warrant that this software will be free from error or meet your specific requirements. You assume
complete responsibility for decisions made or actions taken based on information obtained using the programs. Any
statements made concerning the utility of the programs are not to be construed as expressed or implied warranties. Pentek
makes no warranty, either expressed or implied, including but not limited to, any implied warranties of merchantability
and fitness for a particular purpose, regarding the programs and makes the programs available solely on an “AS IS” basis.
Pentek shall not be responsible for incidental or consequential damages.

Copyright

Copyright © 2017−2018, Pentek, Inc. All Rights Reserved. Contents of this publication may not be reproduced in any form
without written permission.

The Linux kernel is Copyright © by Linus B. Torvalds, under the terms of the General Public License (GPL).

Trademarks

Pentek, Jade, and Navigator are trademarks or registered trademarks of Pentek, Inc.

Linux is a registered trademark of Linus B. Torvalds. Intel and Pentium are registered trademarks of Intel Corporation.
LabVIEW is a trademark of National Instruments MATLAB is a registered trademark of The MathWorks, Inc. Microsoft,
Windows, and Visual Studio are registered trademarks of Microsoft. openSUSE is a registered trademark of Novell, Inc.
Red Hat is a registered trademark of Red Hat, Inc. SUSE is a trademark of SUSE IP Development Limited. WinDriver is a
trademark of Jungo Ltd.

Manual Revision History
Date Version Comments

5/8/17 1.0 Initial Release
8/3/17 2.0 Version 2.0 release adds support for Models 71131 and 71841. Revised Sect 1.2, Sect 1.3.1, Sect

3.3.1, Sect 3.3.2, Sect 3.3.6, Sect 3.4.1, Sect 3.3, Sect 3.3.6.2, Sect 3.4.6.2, Sect 3.4.6.2, Sect 3.4.6.6, Sect
7.5, Sect 7.7, Sect 7.8, Sect 7.9, Sect 7.10, and Sect 9.2. Appendix A: added and updated command
line arguments. Appendix C: revised code snippets in all scenarios; also revised Sect C.7.

10/4/17 2.1 Version 2.1 release adds support for Models 71821 and 71851. Added Sect 9.5 (for KB Case 1540).
Revised -adcdatasrc, −dacdatamode, −dacdatasrc, −xfersize, and Sect A.3.

12/15/17 2.2 Version 2.2 release adds support for Model 71862. It also adds support for Models 7192/7192A/
9192/9192A via the I2C interface on a Model 71841. Revised Sect 1.3.2, Sect 3.4, and Sect 8.3. In
Appendix A, revised -adcdatasrc, −adcoption, −brdoption, −clkoption, −dacoption, −ddcoption,
−dmaoption, −ducoption, −gateoption, −progoption, −syncoption, −vhost, −vport, and Sect A.3.
Revised Sect C.1. Revised code snippet in Sect C.5. Revised text and snippet in Sect C.6.

3/9/18 2.3 Version 2.3 release adds support for Model 71132. Updated the driver version to 12.60. Revised
Sect 3.3.1. In Appendix A, added −adcgatedly, −adcindly, −adcsyncdly, −caddr, −cport, −dac−
gatedly, −dacsyncdly, −saddr, −sport, −vchanmask, and −vsubchan. Revised -adcfreq, -adcdat−
amode, −dacfreq, −dacdatamode, −dacppssrc, −tstart, −tstop, −vhost, and Using Command−
Line Arguments. In Appendix B, revised Sect B.3.

4/13/18 2.4 Version 2.4 release adds support for Model 71141. Revised −dacdatamode.

Printed in the United States of America.

Navigator BSP User’s Guide Page i i i

Page

Table of Contents
Chapter 1: Introduction

1.1 Navigator BSP: Part of the Navigator Design Suite ..1
1.2 Documentation for the Navigator Design Suite...1
1.3 System Requirements for the Navigator BSP ...2

1.3.1 Windows ..2
1.3.2 Linux ...2

Chapter 2: Understanding the Navigator Design Suite

2.1 The Navigator Design Suite ..3
2.2 Use Case Scenarios for the Navigator Design Suite ..3

2.2.1 Scenario 1: No FPGA Customization Needed ..3
Figure 2−1: Jade Model 71861 Built−in FPGA Functions..4

2.2.2 Scenario 2: Customizing the FPGA IP ...5
Figure 2−2: User−Created Custom IP..5

2.3 The Navigator FDK ..6
2.3.1 The AXI4 Standard ...6
2.3.2 The IP Integrator ...6

Figure 2−3: IP Integrator..7
2.3.3 The Role of Navigator BSP ..8

Figure 2−4: Navigator BSP and FDK...8
2.4 “Building Block” FPGA Design and Layered BSP Architecture ...9

Figure 2−5: BSP Layer Diagram ..9
2.5 BSP Library Layers ...10

2.5.1 IP Block / Hardware Layer ...10
2.5.2 Board−Specific / PCIe Support / Utility Layer ...10
2.5.3 High−Level API Layer ...11
2.5.4 Application Layer ...11

Chapter 3: Installing the Navigator BSP

3.1 Introduction...13
3.2 BSP Components...13
3.3 Windows Installation Procedures ..13

3.3.1 Step 1: Install the Navigator Driver ...14
3.3.2 Step 2: Install the Navigator Board Support Package ...15
3.3.3 Step 3: Install the Navigator Example Programs ...15
3.3.4 Step 4 : Install the LabVIEW Runtime Engine ..16
3.3.5 Step 5: Windows Hardware Initialization ..16
3.3.6 How to Manually Install and Uninstall the Navigator BSP Device Driver17

3.3.6.1 Manually Installing the Driver ..18
3.3.6.2 Manually Uninstalling the Driver ..19
Rev.: 2.3

Page iv Navigator BSP User’s Guide

Page

Table of Contents
Chapter 3: Installing the Navigator BSP (continued)

3.4 Linux Installation Procedures .. 20
3.4.1 Step 1: Prepare for the Installation ... 21
3.4.2 Step 2: Install the Navigator Driver ... 22
3.4.3 Step 3: Install the Navigator Board Support Package ... 24
3.4.4 Step 4: Install the Navigator Example Programs ... 25
3.4.5 Removing or Upgrading the Installed Packages ... 26
3.4.6 How to Manually Install the Navigator Packages .. 26

3.4.6.1 Extract the Driver Package from the Distribution Disc 26
3.4.6.2 Set up the Environment Variables for the Driver Package 27
3.4.6.3 Build and Install the Driver Package ... 27
3.4.6.4 Extract the BSP Package from the Distribution Disc 30
3.4.6.5 Set up the Environment Variables for the BSP Package 30
3.4.6.6 Extract the Example Programs from the Distribution Disc 31

3.4.7 Installing the Driver for ReadyFlow Alongside the Driver for Navigator 32

Chapter 4: Navigator BSP Files

4.1 Navigator BSP Directory Structure.. 33
4.2 How the Navigator BSP API Reference is Organized .. 34
4.3 BSP Files and IP Core Files Listed by Topic ... 35

Chapter 5: Building Navigator BSP Libraries

5.1 Introduction .. 37
5.2 Windows Procedures... 37

5.2.1 Navigator Libraries .. 37
5.2.2 Building Libraries Using Msbuild ... 38
5.2.3 Building Libraries Using Microsoft Visual Studio 2015 ... 38

5.2.3.1 Loading the Project ... 38
5.2.3.2 Building the Project .. 39

5.3 Linux Procedures ... 40
5.3.1 Navigator Libraries .. 40
5.3.2 Building the Libraries .. 40
5.3.3 Building Libraries Using Eclipse IDE for C/C++ .. 41

5.3.3.1 Loading the Project ... 41
5.3.3.2 Building the Project .. 42
Rev.: 2.3

Navigator BSP User’s Guide Page v

Page

Table of Contents
Chapter 6: Building Navigator BSP Example Programs

6.1 Introduction...43
6.2 Windows Procedures ...43

6.2.1 Building Example Programs Using Msbuild ..43
6.2.2 Building Example Programs Using Microsoft Visual Studio44

6.2.2.1 Loading a Project ...44
6.2.2.2 Building a Project ..45
6.2.2.3 Executing an Example Program ...45

6.3 Linux Procedures..46
6.3.1 Building the Example Programs from the Command Line ..46
6.3.2 Building Example Programs Using Eclipse IDE for C/C++46

6.3.2.1 Loading the Project ...47
6.3.2.2 Building the Project ..48
6.3.2.3 Executing an Example Program from the Project48

6.3.3 Creating an Eclipse Project for Custom Applications ...50

Chapter 7: Anatomy of a Typical Application

7.1 Obtain Program Arguments ...53
7.2 Initialize the Device Driver ...53
7.3 Open a Board...54
7.4 Initialize Application−Specific Resources...55
7.5 Set Up Board Resources...55
7.6 Dump the Register State for Debugging Purposes..58
7.7 Start the Data Flow ...58
7.8 Manage Data Transfer..59
7.9 Handle Hardware Interrupts ..60
7.10 Stop the Data Flow ...62
7.11 Free up the Resources ..62
7.12 Close the Board ...63
7.13 Uninitialize the Driver ...63
7.14 Exit the Application..63

Chapter 8: Adding an IP Core to the Navigator BSP

8.1 Introduction...65
8.2 Create Your Library Files ..65
8.3 Add Your Files to the Library...68
Rev.: 2.3

Page vi Navigator BSP User’s Guide

Page

Table of Contents
Chapter 9: Troubleshooting

9.1 Cannot run the examples’ executable (Windows)... 71
9.2 DMA Thread cannot be created (Linux) ... 71
9.3 Installing LabVIEW RTE on non−RPM−based systems (Linux)... 72
9.4 Illegible fonts in Navigator Signal Viewer (Linux) ... 73
9.5 Windows 10 update may cause driver and reserve memory issues .. 73

Appendix A: Navigator BSP Command Line Utility

A.1 Introduction .. 1
A.2 List of Command−Line Arguments .. 2
A.3 Using Command−Line Arguments ... 16

Appendix B: Navigator Signal Viewer

B.1 Introduction .. 1
B.2 Description of the Signal Viewer Software... 1

B.2.1 The Viewer Client .. 1
B.2.2 The Viewer Server .. 2

B.3 Sample Programming Scenario.. 3
B.4 Signal Viewer Operation... 4

Figure B−1: Signal Viewer (Default Display).. 4
Figure B−2: Samples/Time Switch... 5
Figure B−3: Display Type Switch .. 5
Figure B−4: Signal Viewer with Spectrogram Display in Left Window.................................. 6
Figure B−5: Amplitude Switch (Spectrum Analyzer Display)... 6
B.4.1 Resume, Pause and Close .. 7

Figure B−6: Resume, Pause and Close Buttons .. 7
B.4.2 Channel, Server, and Board Model .. 7

Figure B−7: Channel, Server, and Board Model... 7
B.4.3 Amplitude Calculator .. 8

Figure B−8: Amplitude Calculator .. 8
B.4.4 Signal Characteristics ... 8

Figure B−9: Signal Characteristics .. 8
B.4.5 Distortion Calculator ... 9

Figure B−10: Distortion Calculator ... 9
B.4.6 Tuning Frequency, FFT Size, and Resolution Bandwidth .. 10

Figure B−11: Tuning Frequency, FFT Size, and Res BW .. 10
B.4.7 Spectrum Averaging .. 10

Figure B−12: Averaging Control.. 10
Rev.: 2.3

Navigator BSP User’s Guide Page vi i

Page

Table of Contents
Appendix B: Navigator Signal Viewer (continued)

B.4 Signal Viewer Operation (continued)
B.4.8 Display Zooming ..11

Figure B−13: Time and FFT (Frequency) Display Controls......................................11
Figure B−14: Time and FFT (Frequency) Zoom Controls ...11
B.4.8.1 Horizontal Zoom ...11
B.4.8.2 Vertical Zoom ..12
B.4.8.3 Windowed Zoom ..12
B.4.8.4 Full Screen ..12
B.4.8.5 Point Zoom ...12
B.4.8.6 Point Shrink ...12

B.4.9 Display Panning ..13
B.4.10 Reset Scale − Oscilloscope and Spectrum Analyzer Displays13

Figure B−15: Reset Scale Button ..13
B.4.11 Cursor Operation ..13

Figure B−16: Cursor Position Adjustment Buttons..13
Figure B−17: Create Cursor Menu ...14
Figure B−18: New Free Cursor 0 ..14
Figure B−19: Cursor 0 Properties ...15
Figure B−20: Cursor 0 Attributes ...16
Figure B−21: Cursor Window with Single Free Cursor and Single−Plot Cursor.16

Appendix C: DMA Callbacks

C.1 Background and Usage..1
C.2 Scenario 1: Signal Recorder ...3
C.3 Scenario 2: Single Snapshot...5
C.4 Scenario 3: Repeated Snapshots..8
C.5 Scenario 4: RADAR Receiver ..10
C.6 Scenario 5: Custom Implementation..12
C.7 Advanced Implementation Details ..14
Rev.: 2.3

Page vi i i Navigator BSP User’s Guide

Page

Table of Contents
This page is intentionally blank
Rev.: 2.3

Navigator BSP User’s Guide Page 1
Chapter 1: Introduction

1.1 Navigator BSP: Part of the Navigator Design Suite

The Navigator™ Design Suite supports Pentek’s Jade® family of products, which are
XMC modules based on the Xilinx® Kintex® Ultrascale® FPGAs. Jade XMCs are offered
on a variety of carriers. The Navigator Design Suite consists of two parts:

 Navigator™ Board Support Package (BSP) − Provides C−callable software routines
for accessing and controlling a Pentek Jade XMC module.

 Navigator™ FPGA Design Kit (FDK) − Pentek’s IP design tool, which uses Vivado’s
block diagram design interface and AXI−4 (Advanced eXtensible Interface), which
enables a modular approach when creating IP.

More information about the Navigator Design Suite and the Navigator BSP’s role in the
Suite is provided in Chapter 2.

This document describes the Navigator™ Board Support Package (BSP) and how to
install and use it. Supplemental information is provided in the appendices.

1.2 Documentation for the Navigator Design Suite

• Navigator BSP User’s Guide (this document)

• The API Reference Guide for the Navigator BSP is available in both HTML and PDF
format (API_Reference.html and API_Reference.pdf). For more information, refer to
Section 4.2. The API Reference Guide is available in the following location:

Windows: C:\Pentek\BSP\BSP_X.Y\docs (where X.Y is the version number)
or
%NAVBSP%\docs

Linux: /home/username/Pentek/BSP/BSP_X.Y/docs (where X.Y is the version number)
or
$NAVBSP/docs

• Provided for FDK users, the Navigator FDK User’s Guide describes how to install and
use the FDK software. The IP Core Conventions Guide and Example Labs tutorial
(807.48111) describes the style, conventions, and standards used in all of Pentek’s
Navigator IP Cores and interfaces, and provides procedures for creating your own IP
cores so they are compatible with the standards and interoperable with the Navigator
IP Core Library. Other supplemental manuals also are available. You can get the
Navigator FDK and associated user manuals by contacting sales@pentek.com.

• An IP Core Manual is provided for each Pentek Navigator IP core in the FDK. These
can be accessed via the Vivado IP Integrator. Some also can be accessed from the
operating manual for the Jade board.
Rev. 2.3

mailto:sales@pentek.com

Page 2 Navigator BSP User’s Guide
1.3 System Requirements for the Navigator BSP

 National Instruments™ LabVIEW™ software

 Microsoft® Visual Studio® Professional 2015

NOTE: To run the executable from the Windows Navigator BSP, the following
software components are required:

• Microsoft Visual C++ 2015 Redistributable package for running the Debug
and Release versions. This may have already been installed on your com−
puter when you installed other Windows applications. It may be included
on your Microsoft Visual Studio installation disk.

• Windows SDK for running the Debug version of the executable. It is
included with Microsoft Visual Studio.

• Microsoft Visual Studio 2015 IDE for utilizing the included solution/proj−
ect files in developing your application.

1.3.1 Windows

• Processor: Intel® Pentium® 4 G1 (or equivalent) or later

• RAM: 1 GB

• Screen resolution: 1024 x 768 pixels

• Operating system (only 64−bit editions are supported):

Microsoft Windows® 10/8.1/8/7 SP1

Windows Server 2012 R2

Windows Server 2008 R2 SP1

• Disk space: 5 GB

1.3.2 Linux

• Processor, RAM, and screen resolution: same as Windows

• Linux distributions (only 64−bit editions are supported): Debian GNU/
Linux 7, 8, 9; Ubuntu 14.04, 15.04, 16.04, 17.04; Fedora 21, 22, 23, 24;
RedHat Enterprise Linux® 6, 7; CentOS 6, 7; Scientific Linux 6, 7; Arch
Linux 2017.09.01; openSUSE® 13.2, Leap 42.3; SUSE Linux Enterprise 12
SP3

• Eclipse IDE: The project files included in the Navigator BSP were created
and tested with Eclipse IDE version 4.6.1, but they should also be
compatible with older versions of Eclipse.

• Disk space: 2.2 GB
Rev. 2.3

Navigator BSP User’s Guide Page 3
Chapter 2: Understanding the Navigator Design Suite

2.1 The Navigator Design Suite

Because the Navigator BSP is part of the Navigator Design Suite, it is important to
understand the purpose and role of the Suite as a whole and how it is used. Pentek’s
Navigator Design Suite was designed to work with Pentek’s Jade architecture products
and it provides a new approach that helps users to more easily navigate through the
task of IP and control software creation and compatibility.

The Navigator Design Suite contains two separate but closely related products:

 The Navigator FPGA Design Kit (FDK) for integrating custom IP into Pentek−
sourced designs

 The Navigator Board Support Package (BSP) for creating host applications.

Users are able to work efficiently at the API level for software development and with
an intuitive graphical interface for IP design.

2.2 Use Case Scenarios for the Navigator Design Suite

It will be easier to understand the Navigator Design Suite if we look at how it might be
used. Let’s look at two use case scenarios and how the Navigator Design Suite can be
used in each.

2.2.1 Scenario 1: No FPGA Customization Needed

Each Pentek data acquisition and processing hardware product has an FPGA.
Pentek's Jade family uses a Xilinx® Kintex® Ultrascale® FPGA. Like all Pentek
products, Jade includes a full suite of built−in FPGA−based functions. For
example, in the case of an A/D converter product, these functions include:

• an A/D data acquisition engine,

• a fully−programmable DDC,

• power meters and a threshold detect function,

• a timestamp and metadata creation engine, and

• a linked list DMA engine that allows users to customize data transfers to a
host computer.

In many cases, users will find that the built−in FPGA−based functions satisfy
all the requirements of their application and no custom FPGA IP is needed
(see Figure 2−1). For these users, the FPGA looks like just another piece of
hardware with fixed functions and a fixed interface for status and control.
Rev. 2.3

Page 4 Navigator BSP User’s Guide
2.2 Use Case Scenarios for the Navigator Design Suite (continued)

2.2.1 Scenario 1: No FPGA Customization Needed (continued)

In this situation, the Navigator BSP API is the best solution for creating appli−
cations that control the Jade hardware. Provided as a C−callable high−level
API, many of the most commonly used built−in functions can be controlled
with simple commands. In addition, example programs (see Chapter 6 and
Chapter 7) and the included Signal Viewer (see Appendix B) allow users to
immediately start acquiring and displaying data in the time and frequency
domains without the need for creating any code.

Figure 2−1: Jade Model 71861 Built−in FPGA Functions
Rev. 2.3

Navigator BSP User’s Guide Page 5
2.2 Use Case Scenarios for the Navigator Design Suite (continued)

2.2.2 Scenario 2: Customizing the FPGA IP

However, if an application requires special processing that only custom IP can
provide (Figure 2−2), the solution is the Navigator FDK. It was created to
work directly with the Xilinx Vivado® Design Suite and creates a seamless
environment for developing IP on Pentek products. 1

1.You can get the Navigator FDK and associated user manuals by contacting sales@pentek.com.

Figure 2−2: User−Created Custom IP
Rev. 2.3

mailto:sales@pentek.com

Page 6 Navigator BSP User’s Guide
2.3 The Navigator FDK

The Navigator FDK leverages two new features in Vivado to greatly streamline IP devel−
opment: the AXI4 standard and the IP Integrator.

2.3.1 The AXI4 Standard

AXI4 is the 4th generation of an interface specification from ARM® commonly
used in the semiconductor industry. Xilinx has adopted this standard to create
AXI4−compliant plug−and−play IP. The benefits can be seen immediately:

• AXI4 consolidates an array of different possible interfaces into a single
well−defined interface.

• AXI4 manages differences in bus speed and width when connecting IP
blocks.

• AXI4 allows easier integration of IP from different sources when all IP is
using the same interface.

• AXI4 still allows enough flexibility to enable IP designers to tailor the
interconnects to meet system performance requirements.

Navigator FDK follows the AXI4 standard. For Pentek’s Jade data acquisition
and processing products, the FDK includes the complete IP that is factory−
installed in the board. This includes all interface, processing, data formatting,
DMA functions, etc. IP designers can modify or replace functions as needed to
match application requirements, and will find immediate compatibility with
Xilinx IP and third−party IP that uses AXI4. Designers who create their own
custom IP using the AXI4 standard will find integration with the Pentek−sup−
plied IP straightforward.

2.3.2 The IP Integrator

So how is the FPGA design actually edited? This is where Navigator FDK
exploits another new feature of Vivado: the IP Integrator. The concept of cre−
ating FPGA designs by connecting blocks in a graphical interface, similar to
drawing a schematic, is not new, but Xilinx's IP Integrator makes it a practical
solution.

To edit a Pentek product design, an FPGA engineer opens the Navigator FDK
design in Vivado. He then has immediate access to the entire board design as
a block diagram. Individual IP cores can be removed, modified, or replaced
with custom IP to meet the application's processing requirements. Because all
blocks have AXI4 interfaces, connections between blocks can simply be
“drawn” with wires or buses and the AXI4 interface handles the “housekeep−
ing” of different bus speeds or widths.
Rev. 2.3

Navigator BSP User’s Guide Page 7
2.3 The Navigator FDK (continued)

2.3.2 The IP Integrator (continued)

Viewing an FPGA design as a block diagram (see Figure 2−3) enables the
designer to see the data flow and simplifies the design processes by working
at the “interface” and not the “signal” level. If, at any time, a designer needs to
work with the VHDL code directly, it is always accessible in a source window.
Full on−line documentation for every Pentek IP core also is available via the
IP Integrator. A complete procedure for creating your own IP core is provided
in IP Core Conventions Guide and Example Labs (807.48111 − obtain by contact−
ing sales@pentek.com).

Figure 2−3: IP Integrator

Once a board's function has been modified by changing FPGA IP, it is most
likely that changes will need to be made in the software controlling the board
to support the new function. While the Navigator's API is ideal for creating
applications for the board, it assumes the board functions have not changed
from the factory−installed set.
Rev. 2.3

mailto:sales@pentek.com

Page 8 Navigator BSP User’s Guide
2.3 The Navigator FDK (continued)

2.3.3 The Role of Navigator BSP

Once custom IP is introduced in the FPGA, the Navigator BSP module library
is the solution for modifying or creating new software. Designed to work with
the Navigator FDK, the Navigator BSP is structured to simplify this process.

Each Navigator IP core module found in the FDK has an equivalent software
module with a similar name in the Navigator BSP. Changes made to an IP
module can be easily traced back to the BSP module to make the necessary
changes to control the new IP. This one−to−one relationship between IP and
software greatly simplifies the task of keeping IP and software in sync.

Figure 2−4: Navigator BSP and FDK
Rev. 2.3

Navigator BSP User’s Guide Page 9
2.4 “Building Block” FPGA Design and Layered BSP Architecture

The Navigator FPGA Design Kit (FDK) for Pentek’s Jade family of boards is character−
ized by a “building−block” approach to FPGA design. FPGA code is developed by
combining IP core modules to create the board functionality.

The Navigator BSP was designed to correspond to the Navigator FDK’s “building−
block” approach to FPGA design. The BSP is a “layered architecture” with four layers:

• Application − User programs are application layer code. These programs call
routines in the high−level API library.

• High−Level API − High−level API library routines call routines in the board−
specific, PCIe driver, and utility libraries.

• Board−Specific, PCIe Driver, and Utility − These libraries consist of routines that
call the lowest level library routines that interface to the FPGA IP core module or
hardware devices.

• IP Block / Hardware − These libraries communicate with the IP block and hardware.

Figure 2−5: BSP Layer Diagram
Rev. 2.3

Page 10 Navigator BSP User’s Guide
2.5 BSP Library Layers

This section describes the BSP library layers in more detail, starting with the bottom
layer (nearest the hardware).

2.5.1 IP Block / Hardware Layer

This layer consists of two components: the IP block library and the hardware
library.

• IP block library: This library provides the software interface to the IP core
modules and communicates directly with them. It is tightly integrated
with the IP core modules and provides a single source and single header
file to support each module. All files are compiled into a single IP core
dynamic−link library (DLL). Functions in this DLL are accessed only via
board−specific layer functions.

• Hardware library: This library communicates with hardware devices that
are external to the FPGA. Currently, there are no memory−mapped
hardware devices. There are hardware devices outside the FPGA, such as
the Si571 VCXO and the CDCM7005 clock divider, but these are not
memory−mapped. They are accessed via IP core modules, such as an I2C
interface. Any functions in a DLL for any future memory−mapped devices
will be accessed only from board−specific layer functions.

2.5.2 Board−Specific / PCIe Support / Utility Layer

This layer consists of three components: board−specific libraries, PCIe sup−
port library, and utility library.

• Board−specific libraries are single DLLs tailored for each XMC board
model family. For example, there is a Model 71861 board family DLL, a
71851−family DLL, etc. Routines in the DLLs are built around calls to
routines in the IP block/hardware libraries. Hardware debugging
routines, such as register dumps, are included in these libraries. Board−
specific libraries also include routines to access hardware devices on the
board that are external to the FPGA but accessed via IP core modules. For
example, the ADS5485 ADC is programmed via the px_ads5485intrfc IP
core module. For more information about IP core modules, see Section 2.3.

• PCIe support library: Single DLLs are provided for PCIe support. The
PCIe driver interfaces to the PCIe bus and does not call external BSP DLLs.

• Utility library: This library provides operating system routines for file
I/O, printing, command line parsing, etc. The utility library also contains
files that support the Signal Viewer. For more information about the
command line utility, see Appendix A. Appendix B describes the Signal
Viewer.
Rev. 2.3

Navigator BSP User’s Guide Page 11
2.5 BSP Library Layers (continued)

2.5.3 High−Level API Layer

The high−level API layer provides routines called by user or example pro−
grams to program and control a Pentek Jade family board. These routines are
generic in nature, calling board−specific routines via function pointers. There
is no direct communication to the IP core or hardware library routines. This
layer makes it unnecessary for users to become directly involved with board−
specific details.

For more information, refer to the Navigator Board Support Package API Refer−
ence Guide, which is available in HTML and PDF format (API_Reference.html
and API_Reference.pdf) in the following location:

Windows: C:\Pentek\BSP\BSP_X.Y\docs
(where X.Y is the version number)
or
%NAVBSP%\docs

Linux: /home/username/Pentek/BSP/BSP_X.Y/docs
(where X.Y is the version number)
or
$NAVBSP/docs

2.5.4 Application Layer

The application layer is the code the user develops for his desired application.
General−purpose examples are provided with the BSP.
Rev. 2.3

Page 12 Navigator BSP User’s Guide
This page is intentionally blank
Rev. 2.3

Navigator BSP User’s Guide Page 13
Chapter 3: Installing the Navigator BSP

3.1 Introduction

This chapter provides the installation procedures for the Navigator BSP:

 Section 3.3 − Windows Installation Procedures

 Section 3.4 − Linux Installation Procedures

3.2 BSP Components

The Navigator BSP consists of three components, which are listed by their names in the
directory structure:

1) driver: Universal driver

2) bsp: Universal board support package (main component)

3) 71nnn: Board−specific example programs and MATLAB scripts for processing
output, where 71nnn is the model number of the Pentek Jade board.

The components are installed in the order given above.

3.3 Windows Installation Procedures

This section contains the following:

• Section 3.3.1 − Step 1: Install the Navigator Driver

• Section 3.3.2 − Step 2: Install the Navigator Board Support Package

• Section 3.3.3 − Step 3: Install the Navigator Example Programs

• Section 3.3.4 − Step 4 : Install the LabVIEW Runtime Engine

• Section 3.3.5 − Step 5: Windows Hardware Initialization

• Section 3.3.6 − How to Manually Install and Uninstall the Navigator BSP Device
Driver
Rev. 2.3

Page 14 Navigator BSP User’s Guide
3.3 Windows Installation Procedure (continued)

3.3.1 Step 1: Install the Navigator Driver

1) Install the Navigator driver package from the distribution CD provided
using the setup.exe program on the CD. DOS commands are used for
illustration.

cd <CDROM_drive>:\NavDriver\Driver_12.60

run setup.exe

2) Define the Navigator directory environment variable. Navigator uses the
Windows environment variable NAVBSP_DRVR to determine the location on
the disk where the driver package has been installed. The variable should
be set as follows:

Variable: NAVBSP_DRVR

Value: [Navigator driver base directory]
(e.g., c:\Pentek\BSP\Driver_12.60)

NOTE: This environment variable is created automatically during
installation and should not have to be set manually.

3) Add the Navigator driver directory search path to the Windows PATH
environment variable: %NAVBSP_DRVR%.

The Path variable is found in the User Variables section of System
Properties on a Windows System. PATH is modified during this
installation. It should be the first element in PATH following this
installation.

NOTE: The PATH environment variable is modified automatically
during installation and should not have to be set manually.
Rev. 2.3

Navigator BSP User’s Guide Page 15
3.3 Windows Installation Procedure (continued)

3.3.2 Step 2: Install the Navigator Board Support Package

1) Install the Navigator BSP package from the distribution CD provided
using the setup.exe program on the CD. DOS commands are used for
illustration. <VERSION> will be the version of the BSP (e.g., 1.0, 1.1, 2.0, etc.).

cd <CDROM_drive>:\NavBSP\BSP_<VERSION>

run setup.exe

2) Define the Navigator BSP directory environment variable. Navigator uses
the Windows environment variable NAVBSP to determine the location on
the disk where the BSP package has been installed. The variable should be
set as follows:

Variable: NAVBSP

Value: [Navigator BSP base directory]
(e.g., c:\Pentek\BSP\BSP_2.3)

NOTE: This environment variable is created automatically during
installation and should not have to be set manually.

3) Add the Navigator BSP directory search path to the Windows PATH
environment variable: %NAVBSP%\lib.

The Path variable is found in the User Variables section of System
Properties on a Windows System. PATH is modified during this
installation. It should be the first element in PATH following this
installation, moving the driver path set in Section 3.3 to the second
element.

NOTE: The PATH environment variable is modified automatically
during installation and should not have to be set manually.

3.3.3 Step 3: Install the Navigator Example Programs

Install the Navigator example programs package from the distribution CD
provided using the setup.exe program on the CD. DOS commands are used
for illustration.

cd <CDROM_drive>:\4815\71nnn_X.Y.dir
(where 71nnn is the model number and X.Y is the version number)

run setup.exe
Rev. 2.3

Page 16 Navigator BSP User’s Guide
3.3 Windows Installation Procedure (continued)

3.3.4 Step 4 : Install the LabVIEW Runtime Engine

Install the LabVIEW Runtime Engine from the distribution CD. DOS com−
mands are used for illustration.

cd <CDROM_drive>:\LabView

run LVRTE2015_f3Patchstd.exe

3.3.5 Step 5: Windows Hardware Initialization

After you have installed the Pentek Navigator package in accordance with
Sections 3.3, 3.3, and you can boot your host Windows system. When Win−
dows first starts up after installation of a Jade board, you may see a set of
screens from the Windows New Hardware Wizard.

If the New Hardware Wizard starts, follow the steps below to respond to it.

1) First screen: Welcome to the Found New Hardware Wizard

This is the first screen displayed. The New Hardware Wizard must search
for Windows software components needed to initialize the new Jade
board. This screen gives three options.

Select Yes, this time only and click on Next.

2) Next screen: The wizard helps you install software for:
 PENTEK 71xxx Multi−Channel Transceiver

This step installs Windows software elements found in the search from the
prior screen. Since you have already installed the Pentek Navigator
software from the distribution CD, do not insert the Pentek installation
CD for this step. This screen gives two options.

Select Install the software automatically and click on Next.

3) Next screen: Please wait while the wizard searches...

This screen requires no response. Just wait until the operation completes,
as indicated by the following screen.

4) Last screen: Completing the Found New Hardware Wizard

This screen indicates completion of the New Hardware Wizard—just click
on Finish.
Rev. 2.3

Navigator BSP User’s Guide Page 17
3.3 Windows Installation Procedure (continued)

3.3.5 Step 5: Windows Hardware Initialization (continued)

You may verify installation of the required Windows software as follows:

a) Select Windows Start −> Control Panel.

b) In the Control Panel window click on System and Security.

c) In the next panel, click on Device Manager under System.

d) The Device Manager window lists the devices installed in your
Windows system. Click on the pointer symbol to the left of the System
devices line to expand the system devices, including any Pentek
devices.

3.3.6 How to Manually Install and Uninstall the Navigator BSP Device
Driver

The Windows install program automatically configures the Windows device
drivers for the Pentek Jade board. The DOS procedures in Sections 3.3 and 3.3
are provided for you to use only if configuration is not possible using the
setup.exe program provided on the Pentek distribution CD.

The following environment variable and search path is set during Navigator
driver installation.

Device Driver Environment Variable

NAVBSP_DRVR − Navigator driver base directory
 (e.g., C:\Pentek\BSP\Driver_12.60)

 This environment variable is created during driver installation.

Device Driver Search Path

%NAVBSP_DRVR%

The path variable is found in the User Variables section of System Properties
on a Windows system. Path is modified during driver installation. It should
be the second element in PATH, following the BSP library path.
Rev. 2.3

Page 18 Navigator BSP User’s Guide
3.3 Windows Installation Procedure (continued)

3.3.6 How to Manually Install and Uninstall the Navigator BSP Device
Driver (continued)

3.3.6.1 Manually Installing the Driver

These are the steps performed by the Windows install program
when installing the Navigator driver installation package.

1) For Windows 10, in a DOS command window, change to the
following directory:

cd %NAVBSP_DRVR%\win64_10

For earlier versions of Windows, in a DOS command window,
change to the following directory:

cd %NAVBSP_DRVR%\win64

NOTE: The NAVBSP_DRVR environment variable is set during
distribution installation. You can verify it from the
DOS command prompt by typing echo
%NAVBSP_DRVR% and pressing the ENTER key.

2) Execute the following commands:

wdreg -inf windrvr1260.inf install

wdreg -inf nav718x.inf install

copy KP_718x.sys c:\windows\system32\drivers

wdreg -name KP_718x install
Rev. 2.3

Navigator BSP User’s Guide Page 19
3.3 Windows Installation Procedure (continued)

3.3.6 How to Manually Install and Uninstall the Navigator BSP Device
Driver (continued)

3.3.6.2 Manually Uninstalling the Driver

These steps are already performed by the Windows uninstall pro−
gram when uninstalling the Navigator driver installation package.

1) For Windows 10, in a DOS command window, change to the
following directory:

cd %NAVBSP_DRVR%\win64_10

For earlier versions of Windows, in a DOS command window,
change to the following directory:

cd %NAVBSP_DRVR%\win64

NOTE: The NAVBSP_DRVR environment variable is set during
distribution installation. You can verify it from the
DOS command prompt by typing echo
%NAVBSP_DRVR% and pressing the ENTER key.

2) Execute the following commands:

wdreg -name KP_718X uninstall

wdreg -inf nav718x.inf uninstall

wdreg -inf windrvr1260.inf uninstall

del c:\windows\system32\drivers\KP_718X.sys
Rev. 2.3

Page 20 Navigator BSP User’s Guide
3.4 Linux Installation Procedures

Navigator BSP for Linux comes equipped with an interactive script that automates the
process of installing the BSP on a Linux host. This script currently supports the Linux
distributions listed in Section 1.3.2. The installer may also work on newer versions of
the supported distributions or on other distributions derived from them but it has not
been tested. In addition, the dependency of the driver package on Linux kernel ver−
sions may cause incompatibility. Installing a compatible kernel should solve such
problems.

The following sections describe how to use the interactive installer and also how to
manually install the Navigator BSP:

• Section 3.4.1 − Step 1: Prepare for the Installation

• Section 3.4.2 − Step 2: Install the Navigator Driver

• Section 3.4.3 − Step 3: Install the Navigator Board Support Package

• Section 3.4.4 − Step 4: Install the Navigator Example Programs

• Section 3.4.5 − Removing or Upgrading the Installed Packages

• Section 3.4.6 − How to Manually Install the Navigator Packages

• Section 3.4.7 − Installing the Driver for ReadyFlow Alongside the Driver for
Navigator
Rev. 2.3

Navigator BSP User’s Guide Page 21
3.4 Linux Installation Procedures (continued)

3.4.1 Step 1: Prepare for the Installation

To access the Navigator installer present on the CD, you will need to mount it.
Most Linux distributions will automatically mount an optical disc when it is
inserted into the computer. A disc also can be mounted manually. Depending
on the platform, superuser permissions may be required.

The commands shown here assume that the optical disc drive is /dev/cdrom.
Open a terminal program and mount the Navigator distribution CD to a loca−
tion of your choice (for example, /mnt/cdrom) and change to that directory:

Execute the interactive script to begin installation:

This interactive script will try to install the three components of Navigator:
device driver, BSP library, and example programs. For each component, you
are given four choices, one of which must be selected by entering an associ−
ated letter at the prompt:

• Install [i] : Perform the full installation, including setting up the envi−
ronment variables and init scripts. A superuser password is required for
this option.

• Extract [e] : Just extract the archive to the chosen location. Manual
steps will be necessary afterwards.

• Uninstall [u] : Completely remove the package, including the environ−
ment variables and init scripts. A superuser password is required for this
option.

• Skip [s] : Skip the component altogether and move on.

The installer will first print introductory messages to the console identifying
the included Navigator package versions and the system information. The
installer can identify several popular Linux distributions as noted above.
However, it may happen that a particular distribution cannot be identified. In
such a case, the installer will show a list of supported distributions and
require you to select the one that is the closest match to your system.

$ mkdir /mnt/cdrom
$ mount -t iso9660 /dev/cdrom /mnt/cdrom
$ cd /mnt/cdrom

$ sh ./INSTALL.sh
Rev. 2.3

Page 22 Navigator BSP User’s Guide
3.4 Linux Installation Procedures (continued)

3.4.2 Step 2: Install the Navigator Driver

Once the distribution has been identified, the installer will ask which action is
required for the Navigator driver package. Type in i and press the Enter key
to select the Install option. The text below shows the messages printed by
the interactive installer. The last line, in bold text, shows user input.

Next, type the path where you wish to install the Navigator Driver. By
default, packages are installed within the directory in the user's home direc−
tory that contains the Navigator Design Suite. If the default path shown on
your screen is acceptable, just press the Enter key.

To successfully build and insert modules in the kernel, you must have access
to the Linux kernel source or at least its header files. These source or header
files must be the ones used to build the kernel in which the module is to be
used. The interactive installer will attempt to locate the headers for the run−
ning kernel. If the headers cannot be located, you will be asked to provide the
full path to them.

Superuser privileges are necessary to complete the driver installation. When
prompted, provide password for the root user account.

The installer will then proceed to extract and build the driver package at the
specified location.

...
Do you wish to Install/Extract/Uninstall/Skip the Navigator Driver
package? [i/e/u/s]?
i

Please specify the full path where Navigator Device Driver will be
installed (e.g. /home/username/Pentek/BSP)
A new directory for the driver will be created within this location.
Press return to use default location (i.e. /home/johndoe/Pentek/BSP)

...
Please enter the 'root' account password when prompted.
Password: <yourpassword>
Rev. 2.3

Navigator BSP User’s Guide Page 23
3.4 Linux Installation Procedures (continued)

3.4.2 Step 2: Install the Navigator Driver (continued)

In the final phase, the installer will set up a helper script (pentek-navdriver) to
manage driver modules and then associate it with the init system to auto−
matically load Pentek device driver modules at system startup. Two init sys−
tems are supported: systemd on all distributions, and SysV init on Debian and
RedHat families.

The helper script is installed at the location /usr/local/bin/pentek-navdriver.
This script can be used to load or unload the driver modules on demand.

Usage:

Another script named pentek-nv-env.sh is created or updated to load the
environment variables necessary to link programs with the device driver. It is
located at:

/usr/local/bin/pentek-nv-env.sh

This script initializes the NAVBSP_DRVR variable with the path to Navigator
driver installation. It also updates the PATH and LD_LIBRARY_PATH environment
variables. A symbolic link to this helper script is created as

/etc/profile.d/pentek-nv-env.sh

Depending on the distribution and desktop environment, this will provide the
environment variables to all programs.

The global bashrc file is modified to invoke the pentek-nv-env.sh, ensuring
that all instances of the Bash interactive shell have access to the necessary
variables. If you are using other shells, modify the respective files to obtain a
working environment.

The installer also updates the /etc/security/limits.conf file to raise the
resource limit on POSIX message queues. This is necessary for smooth opera−
tion of the DMA callback mechanism in the BSP. Consult Appendix C for
more information.

If there is an error at any stage, the installer will print a message at the point of
failure.

sudo pentek-navdriver {start|stop|status}
Rev. 2.3

Page 24 Navigator BSP User’s Guide
3.4 Linux Installation Procedures (continued)

3.4.3 Step 3: Install the Navigator Board Support Package

After the installation for the driver package finishes successfully, or if it is
skipped entirely, the installer will move on to the Navigator BSP and ask
which action is required. Type in i and press the Enter key to select the
Install option.

Next, type the path where you wish to install the Navigator BSP. If the default
path is acceptable, just press the Enter key.

Superuser privileges are necessary to complete the BSP installation. When
prompted, provide the password for the root user account.

The installer will then proceed to extract and build the BSP at the specified
location. The driver package must already be installed in order for the build to
succeed.

Similar to the driver installation, the script named pentek-nv-env.sh is cre−
ated or updated to load the environment variables necessary to compile and
link programs with the BSP libraries. It is located at

 /usr/local/bin/pentek-nv-env.sh

This script initializes the NAVBSP variable with the path to the Navigator BSP
installation. It also updates the LD_LIBRARY_PATH environment variable.

...
Do you wish to Install/Extract/Uninstall/Skip the Navigator BSP
package? [i/e/u/s]?
i

Please specify the full path where Navigator BSP will be installed
(e.g. /home/username/Pentek/BSP)
A new directory for the BSP will be created within this location.
Press return to use default location (i.e. /home/johndoe/Pentek/BSP)

...
Please enter the 'root' account password when prompted.
Password: <yourpassword>
Rev. 2.3

Navigator BSP User’s Guide Page 25
3.4 Linux Installation Procedures (continued)

3.4.3 Step 3: Install the Navigator Board Support Package (continued)

A symbolic link to this helper script is created as

/etc/profile.d/pentek-nv-env.sh

Depending on the distribution and desktop environment, this will provide the
environment variables to all programs.

The global bashrc file is also modified to invoke the pentek-nv-env.sh to
ensure that all instances of the Bash interactive shell have access to the neces−
sary variables. If you are using other shells, modify the respective files to
obtain a working environment.

3.4.4 Step 4: Install the Navigator Example Programs

After the installation of the driver and BSP packages finishes successfully, or if
they are skipped, the installer will move on to the Navigator examples pack−
age for a particular Jade board and ask what action is required. Type in i and
press the Enter key to select the Install option.

Next, type the path where you wish to install the Navigator examples pack−
age. If the default path is acceptable, just press the Enter key.

The installer will then proceed to extract and build the board−specific exam−
ple programs at the specified location. Both the driver and BSP packages must
already be installed in order for the build to complete successfully.

...
Do you wish to Install/Extract/Uninstall/Skip the 71861 Examples
package? [i/e/u/s]?
i

Please specify the full path where Navigator BSP samples for 71861
will be installed (e.g. /home/username/Pentek/BSP)
A new directory for the Board-specific samples will be created
within this location.
Or press return to use default location (i.e. /home/johndoe/Pentek/
BSP)
Rev. 2.3

Page 26 Navigator BSP User’s Guide
3.4 Linux Installation Procedures (continued)

3.4.5 Removing or Upgrading the Installed Packages

If you wish to remove packages installed through the interactive script, you
just need to re−run the script and select the Uninstall option by typing u
when prompted. Uninstalling one package leaves the other packages intact.

Make sure you use the same version of the script for both installation and un−
installation. We recommend that you remove the old package using the old
installer before upgrading to a new version.

3.4.6 How to Manually Install the Navigator Packages

If the interactive installation fails for some reason, the Navigator packages can
be installed manually.

3.4.6.1 Extract the Driver Package from the Distribution Disc

Create a directory to contain the Navigator Design Suite and
change to that directory:

Extract the Navigator driver package from the distribution CD:

tar -xvf /mnt/cdrom/NavDriver/Driver_<VERSION>.tar

where <VERSION> will be 12.50, 12.60, 13.00, etc. and /mnt/cdrom is
the mount point for the optical disc drive.

We will be using the driver version 12.60 for the example com−
mands below:

$ mkdir ~/Pentek ~/Pentek/BSP
$ cd ~/Pentek/BSP

$ tar -xvf /mnt/cdrom/NavDriver/Driver_12.60.tar
Rev. 2.3

Navigator BSP User’s Guide Page 27
3.4 Linux Installation Procedures (continued)

3.4.6 How to Manually Install the Navigator Packages (continued)

3.4.6.2 Set up the Environment Variables for the Driver Package

Define the Navigator driver directory environment variable. The
Navigator driver uses the environment variable NAVBSP_DRVR to
determine the location on the disk where the package has been
installed.

• If using tcsh or csh, enter in the shell:

setenv NAVBSP_DRVR /home/user/Pentek/BSP/Driver_12.60

• If using bash, sh, or ksh, enter in the shell:

export NAVBSP_DRVR=/home/user/Pentek/BSP/Driver_12.60

Add the Navigator Driver library directory to the LD_LIBRARY_PATH
environment variable:

• If using tcsh or csh, enter in the shell:

LD_LIBRARY_PATH $LD_LIBRARY_PATH:$NAVBSP_DRVR/kplugin

• If using bash, sh, or ksh, enter in the shell:

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$NAVBSP_DRVR/kplugin

3.4.6.3 Build and Install the Driver Package

In order to build the driver modules, header files for the running
kernel must be installed. Depending on the distribution and its
installation, these files may or may not get installed automatically.
To install the header files for the kernel supplied by your distribu−
tion, run one of the following commands as root (note that the `
symbols in the commands are backticks and not apostrophes):

• For Debian and Ubuntu:

apt-get install linux-headers-`uname -r`

• For Fedora, RedHat, and CentOS:

yum install kernel-headers-`uname -r` kernel-devel-`uname -r`

• For other distributions, consult their official documentation.
Rev. 2.3

Page 28 Navigator BSP User’s Guide
3.4 Linux Installation Procedures (continued)

3.4.6 How to Manually Install the Navigator Packages (continued)

3.4.6.3 Build and Install the Driver Package (continued)

The driver package uses the standard Unix install process based on
Autotools. Log in as root and change to the redist directory in
the extracted package. Then execute the configure script and
Makefile as shown below:

In order to run example programs as a regular user, execute the
following command:

where XXXX is the first four digits of the driver version without the
dot character (i.e., 1260).

To verify that the drivers are installed, execute the following com−
mand:

Output should look similar to the following:

 KP_718X 49508 0
 windrvr1260 28765 1 KP_718X

$ su
cd $NAVBSP_DRVR/redist
./configure --disable-usb-support --enable-kbuild --
with-kernel-source=/lib/modules/`uname -r`/build
make

chmod 666 /dev/windrvrXXXX

$ lsmod | grep KP
Rev. 2.3

Navigator BSP User’s Guide Page 29
3.4 Linux Installation Procedures (continued)

3.4.6 How to Manually Install the Navigator Packages (continued)

3.4.6.3 Build and Install the Driver Package (continued)

To automatically load the driver on each boot, add the following
two lines to /etc/rc.local or any other init script (change the
driver version as appropriate):

/home/user/Pentek/BSP/Driver_12.60/redist/wdreg windrvr1260 auto
chmod 666 /dev/windrvr1260
modprobe KP_718X

These commands can also be executed as root in the shell after
system startup.

Navigator BSP has built−in support for managing DMA opera−
tions in parallel threads (see Appendix C for more information).
For smooth execution in all scenarios, you must increase the
resource limits imposed by Linux.

To raise the default limit on the maximum memory allowed for use
by POSIX message queues, copy the following two lines to your
/etc/security/limits.conf file:

* hard msgqueue 4915200
* soft msgqueue 4915200

To increase the maximum depth of message queues, execute the
following command as root on system startup (or place this line in
an init script like /etc/rc.local):

echo 2048 > /proc/sys/fs/mqueue/msg_max
Rev. 2.3

Page 30 Navigator BSP User’s Guide
3.4 Linux Installation Procedures (continued)

3.4.6 How to Manually Install the Navigator Packages (continued)

3.4.6.4 Extract the BSP Package from the Distribution Disc

If not already done, create a directory to contain the Navigator
Design Suite and change to that directory:

Extract the Navigator BSP package from the distribution CD:

where <VERSION> will be 1.0, 1.1, 2.0, etc., and /mnt/cdrom is the
mount point for the optical disc drive. We will be using the BSP
version 1.0 for the example commands below:

3.4.6.5 Set up the Environment Variables for the BSP Package

Define the Navigator BSP directory environment variable. Navi−
gator BSP uses the environment variable NAVBSP to determine the
location on the disk where the package has been installed.

• If using tcsh or csh, enter in the shell:

setenv NAVBSP /home/user/Pentek/BSP/BSP_1.0

• If using bash, sh, or ksh, enter in the shell:

export NAVBSP=/home/user/Pentek/BSP/BSP_1.0

$ mkdir ~/Pentek ~/Pentek/BSP
$ cd ~/Pentek/BSP

tar -xvf /mnt/cdrom/NavBSP/BSP_<VERSION>.tar

$ tar -xvf /mnt/cdrom/NavBSP/BSP_1.0.tar
Rev. 2.3

Navigator BSP User’s Guide Page 31
3.4 Linux Installation Procedures (continued)

3.4.6 How to Manually Install the Navigator Packages (continued)

3.4.6.5 Set up the Environment Variables for the BSP Package
(continued)

Add the Navigator driver library directory to the LD_LIBRARY_PATH
environment variable:

• If using tcsh or csh, enter in the shell:

setenv LD_LIBRARY_PATH $LD_LIBRARY_PATH:$NAVBSP/lib

• If using bash, sh, or ksh, enter in the shell:

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$NAVBSP/lib

3.4.6.6 Extract the Example Programs from the Distribution Disc

If not already done, create a directory to contain the Navigator
Design Suite and change to that directory:

Extract the Navigator examples package for your board from the
distribution CD:

where <MODEL> will be 71861, 71841, etc., <VERSION> will be the BSP
version without the dot character (like 10, 11, 20, etc.), and
/mnt/cdrom is the mount point for the optical disc drive. As an
example, we will use the model 71861 package version 1.0 (such
that <VERSION> is 10) for the example command below:

No environment variables need to be created to point to the exam−
ples package. To build and run the Navigator examples or any user
application based on the Navigator BSP, we need the environment
variables set up in Sections 3.4.6.2 and 3.4.6.5.

$ mkdir ~/Pentek ~/Pentek/BSP
$ cd ~/Pentek/BSP

tar -xvf /mnt/cdrom/4814/<MODEL><VERSION>.tar

$ tar -xvf /mnt/cdrom/4814/7186110.tar
Rev. 2.3

Page 32 Navigator BSP User’s Guide
3.4 Linux Installation Procedures (continued)

3.4.7 Installing the Driver for ReadyFlow Alongside the Driver for
Navigator

Your situation may require you to use both Pentek’s ReadyFlow and Naviga−
tor Board Support Packages on the same machine. To maintain compatibility
with the kernel, it may be necessary to use the latest drivers for ReadyFlow
and Navigator.

Driver packages supplied by Pentek are built upon Jungo's WinDriver frame−
work. It is possible to install an older version and a newer version of Win−
Driver on the same machine. For example, a system with Linux kernel v3.10
can have WinDriver 11.80 for ReadyFlow as well as WinDriver 12.60 for Nav−
igator (because Navigator does not work with lower versions of WinDriver).

Now if the aforementioned system needs to be upgraded with Linux kernel
4.6, the WinDriver version for ReadyFlow must also be upgraded because
v11.80 is not compatible with Linux 4.6. Users facing this issue may request an
upgraded driver package for ReadyFlow that is compatible with newer ker−
nels.

Such a package must be installed separately in accordance with the steps out−
lined in the User's Guide for ReadyFlow. This package may use the same
WinDriver version as its base as that of the Navigator driver. Since Pentek
kernel modules depend on Jungo's WinDriver modules, all of them must be
inserted or removed together.

The helper script placed by Navigator interactive installer at the location /
usr/local/bin/pentek-navdriver has a variable within it that can be used to
enable support for the legacy ReadyFlow kernel modules.

Edit that script as root and set:

LEGACY_SUPPORT=1

Once that is done, executing pentek-navdriver {start|stop} will insert/
remove all Pentek and Jungo kernel modules together. This will be necessary
only if both ReadyFlow and Navigator driver packages use the same Win−
Driver version as their base.
Rev. 2.3

Navigator BSP User’s Guide Page 33
Chapter 4: Navigator BSP Files

4.1 Navigator BSP Directory Structure

The directory structure shown below is created under the \Pentek\BSP\BSP_x.y direc−
tory (where x.y is the Navigator BSP version number). 71nnn is the Jade board model
number.

71nnn examples Base directory for all sample programs. A readme file describes the examples
and how to run them. Each sample program has its own directory.

71nnn scripts MATLAB scripts for processing program output

BSP bin BSP binaries, such as Signal Viewer

BSP docs BSP documentation files

BSP filters FIR filter files

BSP include Include files for API layer libraries

BSP include [nnn]_include Include files for board layer board−specific libraries, where
nnn in the directory is the last three digits of the board's
family model number. For example, the board−specific
directory for Model 71861 is 860_include.

BSP include dev_include Include files for hardware layer device libraries

BSP include ip_include Include files for hardware layer IP core libraries

BSP include util_include Include files for board layer utility libraries

BSP source Source code for the high−level interface

BSP source [nnn]_source Source code for board layer board−specific libraries, where
nnn in the directory is the last three digits of the board's
family model number. For example, the board−specific
directory for Model 71861 is 860_source.

BSP source dev_source Source code for hardware layer device libraries

BSP source ip_source Source code for hardware layer IP core libraries

BSP source util_source Source code for board layer utility libraries

BSP lib Pre−compiled Navigator libraries and build tools

BSP util Utility programs

Driver Support files for the device driver
Rev. 2.3

Page 34 Navigator BSP User’s Guide
4.2 How the Navigator BSP API Reference is Organized

This section describes how the Navigator BSP API Reference Guide, is organized. The API
Reference Guide describes the source and include files in the BSP. It is provided in
HTML and PDF formats (API_Reference.html and API_Reference.pdf) in the following
location:

Windows: C:\Pentek\BSP\BSP_X.Y\docs (where X.Y is the version number)
or
%NAVBSP%\docs

Linux: /home/username/Pentek/BSP/BSP_X.Y/docs (where X.Y is the version number)
or
$NAVBSP/docs

The Navigator API Reference Guide consists of three main parts:

 Main Page (HTML) or Overview (PDF) − Provides software release information.

 Data Structures (the PDF divides this into two chapters: data structure index and
data structure documentation) − Provides information about the data structures. The
data structures are listed alphabetically. The listing for each data structure names
the header (include) file that contains it.

 Files (the PDF divides this into two chapters: file index and file documentation) −
Provides information about what is in all the source and include files. The Files are
grouped as follows:

• General include and source files − All the BSP header files are in the include
folder and all the BSP source files are in the source folder. There are three
sub−folders in each of these folders:

• Board−specific (e.g., 860_include or 860_source, where 860 identifies a
specific board) − Specific to a Jade board family. A board family includes a
specific XMC module plus boards with that module on various carriers.

• Device−specific (dev_include or dev_source) − Specific to a device on the
module that is outside the FPGA such as the Texas Instruments
CDCM7005 clock synchronizer or the Silicon Laboratories Si571 VCXO.

• IP core module files (ip_include or ip_source) − Specific to an IP core
module.

• Utility − Operating system routines, for file I/O, printing, command line
parsing, etc. The utility library also contains files that support the Signal
Viewer (described in Appendix B).
Rev. 2.3

Navigator BSP User’s Guide Page 35
4.3 BSP Files and IP Core Files Listed by Topic

The navNNN_ prefix indicates a board−specific file.

Topic Navigator BSP Files

ADC

navNNN_adc.c
navNNN_adc.h
nav_adc.c
nav_adc.h

API
nav_api.c
nav_api.h

Board

navNNN_board_info.c
navNNN_board_info.h
nav_board_info.c
nav_board_info.h

Clock

navNNN_cdcm.c
navNNN_cdcm.h
navNNN_clocksync.c
navNNN_clocksync.h
nav_clocksync.c
nav_clocksync.h
nav_dev_cdcm7005.c
nav_dev_cdcm7005.h

Command Line Utility
nav_cmd.c
nav_cmd.h

Debug
nav_debug.c
nav_debug.h

Decimation
nav_ddc.c
nav_ddc.h

Device

nav_dev.h
nav_dev_cdcm7005.c
nav_dev_cdcm7005.h
nav_dev_common.h
nav_dev_lm83.c
nav_dev_lm83.h
nav_dev_lm95234.c
nav_dev_lm95234.h
nav_dev_ltc2990.c
nav_dev_ltc2990.h
nav_dev_si571.c
nav_dev_si571.h

Digital Downconverter
(DDC)

navNNN_ddc.c
naNNNv_ddc.h
nav_ddc.c
nav_ddc.h
Rev. 2.3

Page 36 Navigator BSP User’s Guide
NOTE: Refer to the Navigator BSP API Reference Guide for a complete list of files. (see
Section 1.2).

Direct Memory Access
(DMA)

navNNN_dma.c
navNNN_dma.h
nav_dma.c
nav_dma.h
nav_dma_common.c
nav_dma_common.h
nav_dmathread.c
nav_dmathread.h

Gate / Trigger

navNNN_gatetrig.c
navNNN_gatetrig.h
nav_gatetrig.c
nav_gatetrig.h

Interrupts

navNNN_intr.c
navNNN_intr.h
nav_intr.c
nav_intr.h
nav_ip_general_intr.h

IP

nav_ip_common.h
nav_ip_core.h
Each Navigator IP core has
a corresponding source
and include file.

IP Generic Interrupt
nav_ip_general_intr.c
nav_ip_general_intr.h

Memory Map navNNN_mem_map.h

Operating System
nav_os.h
nav_sys.h
nav_sys.c

Power Meter

navNNN_pwr_meter.c
navNNN_pwr_meter.h
nav_pwr_meter.c
nav_pwr_meter.h

Signal Viewer
nav_view.c
nav_view.h

Test Signal

navNNN_testsig_gen.c
navNNN_testsig_gen.h
nav_testsig_gen.c
nav_testsig_gen.h

Topic Navigator BSP Files
Rev. 2.3

Navigator BSP User’s Guide Page 37
Chapter 5: Building Navigator BSP Libraries

5.1 Introduction

This chapter provides procedures for building the Navigator BSP libraries:

 Section 5.2 − Windows Procedures

 Section 5.3 − Linux Procedures

5.2 Windows Procedures

The Navigator source files are located in the BSP\source and BSP\include directories.
The BSP\lib directory contains Microsoft Visual Studio project files to build the Navi−
gator Libraries. All libraries are built using Microsoft Visual Studio 2015.

5.2.1 Navigator Libraries

The Navigator BSP employs multiple dynamic link libraries (DLLs). They
support a layered architecture consisting of three software layers: API layer,
board layer, and hardware layer.

• NavBSP_API - API layer DLL. Contains general routines to program and
control a Jade board. These routines call routines in board−layer DLLs.

• NavBSP_nnn (where nnn = board model) − Board layer board−specific DLL.
Calls routines in the board layer utility DLL and the hardware layer DLLs.

• NavBSP_Util - Board layer general−purpose DLL. Calls routines in the
hardware layer DLLs.

• NavBSP_Dev - Hardware−layer DLL. Contains routines to interface to
Pentek board hardware devices other that the FPGA. Calls routines in the
hardware layer IP DLL.

• NavBSP_IP - Hardware−layer DLL. Contains routines to interface to IP
modules in the FPGA.
Rev. 2.3

Page 38 Navigator BSP User’s Guide
5.2 Windows Procedures (continued)

5.2.2 Building Libraries Using Msbuild

A solution file, NavBSP.sln, is provided to build all libraries. Project files are
provided to build the individual libraries. Project file names use the library
names (see Section 6.2). For example, the IP core library project filename is
NavBSP_ip.vcxproj. These files are found in the lib directory. Compiling with
msbuild.exe, provided in the Visual Studio package, assumes the Navigator
NAV_BSP_DRVR environment variable is properly set.

To build all libraries, call msbuild with the following syntax:

msbuild NavBSP.sln /p:Configuration=Debug

To build individual libraries, call msbuild with the following syntax (where
library is the desired library):

msbuild NavBSP.sln /t:library /p:configuration=Debug

or

msbuild NavBSP.sln /t:library /p:configuration=Release

For example, to build the IP core library for release:

msbuild NavBSP.sln /t:NavBSP_IP /p:configuration=Release

5.2.3 Building Libraries Using Microsoft Visual Studio 2015

Microsoft Visual Studio files are provided for building the Navigator library.
The BSP\lib directory contains one solution file (NavBSP.sln) and several proj−
ect files (*.vcxproj) as listed in Section 5.2.1.

5.2.3.1 Loading the Project

1) Start Microsoft Visual Studio.

2) Click on File on the menu bar.

3) Click on Project/Solution in the pull−down menu.

4) Browse to the library directory
(e.g., c:\Pentek\BSP\BSP_X.Y\lib)
(where X.Y is the Navigator BSP version number).

5) Double−click on the NavBSP.sln solution file.

6) The selected project is automatically loaded and ready to be
built.
Rev. 2.3

Navigator BSP User’s Guide Page 39
5.2 Windows Procedures (continued)

5.2.3 Building Libraries Using Microsoft Visual Studio 2015 (continued)

5.2.3.2 Building the Project

Once the selected project is loaded (as described above) the project
can be built as follows:

1) Click on Build and then select Batch Build.

2) Select one of the following:

NavBSP_API\Debug
NavBSP_API\Release
NavBSP_nnn\Debug (where nnn = board model)
NavBSP_nnn\Release (where nnn = board model)
NavBSP_Util\Debug
NavBSP_Util\Release
NavBSP_Dev\Debug
NavBSP_Dev\Release
NavBSP_IP\Debug
NavBSP_IP\Release

3) Click on Build.

4) A Build Output window will open, showing the build process.
When build completes, the following message is displayed:

Build: 1 succeeded, 0 failed, 0 up-to-date, 0 skipped

NOTE: If you had selected both Debug and Release in step 2, the number
succeeded should be 2.
Rev. 2.3

Page 40 Navigator BSP User’s Guide
5.3 Linux Procedures

The Navigator source files are located in the BSP/source and BSP/include directories.
The BSP/lib directory contains a Makefile to build the Navigator Libraries.

5.3.1 Navigator Libraries

The Navigator BSP employs multiple dynamic link libraries (shared objects).
They support a layered architecture consisting of three software layers: API
layer, board layer, and hardware layer.

• libnav.so - Monolithic shared library containing all the routines
available in Navigator BSP.

• libnavapi.so - API layer shared library. Contains general routines to
program and control a Pentek Jade board. These routines call routines
Board layer shared libraries.

• libnavutl.so - API layer general purpose shared library. Calls routines in
the Board or Hardware layer libraries.

• libnavNNN.so - (where NNN = board model) Board layer library for a
specific Jade model. Calls routines in the API layer utility library and the
Hardware layer libraries.

• libnavdev.so - Hardware layer shared library. Contains routines to
interface to Pentek board hardware devices other than the FPGA. Calls
routines in the Hardware Layer IP library.

• libnavip.so - Hardware layer shared library. Contains routines to
interface to IP−cores in the FPGA.

Each of these shared libraries has a corresponding static library with a .lib
extension. The Navigator examples use the shared libraries by default but the
user applications can be compiled against either shared or static libraries.

5.3.2 Building the Libraries

The lib directory (located below the BSP root directory) contains a Makefile
that is used to build the libraries and also to generate documentation from the
source code through Doxygen. The Navigator source and header files are
located in the source and include directories located below the BSP root
directory. These top−level directories contain the API−level files and are used
to build the API libraries. They also contain sub−directories that have files for
other libraries.

The Makefile has several invocation targets. Executing make or make all will
compile the sources to create libraries. Refer the documentation within the
Makefile for a detailed explanation of all available targets.
Rev. 2.3

Navigator BSP User’s Guide Page 41
5.3 Linux Procedures (continued)

5.3.3 Building Libraries Using Eclipse IDE for C/C++

Navigator BSP for Linux systems includes project files for building and de−
bugging the BSP library in Eclipse IDE. The Eclipse project relies on Makefile
(mentioned in Section 5.3.2) to build the libraries. However, the IDE provides
a superior experience while editing, building, and debugging the source code.

The relevant project description files (.project, .cproject) are present in the
BSP root directory. To be able to successfully import this project into Eclipse,
the CDT (C/C++ Development Tooling) plugin must be installed in the base
IDE. Eclipse Foundation also provides customized versions of the base Eclipse
IDE which focus on certain classes of users.

Go to http://www.eclipse.org/downloads/packages/ and download and
install the latest Eclipse IDE for C/C++ Developers package to quickly get
started with development.

5.3.3.1 Loading the Project

1) Start Eclipse IDE for C/C++. Make sure that the Eclipse
graphical environment has access to the NAVBSP, NAVBSP_DRVR,
and LD_LIBRARY_PATH environment variables. An easy way to
accomplish this is to export those variables from a terminal
window and then launch the Eclipse binary from there. These
commands can also be bundled into a script for ease of use.

2) Create or open the Workspace for Navigator. We recommend
using a dedicated workspace for working on the Navigator
library and associated applications.

3) Click on File on the menu bar.

4) Click on Import… in the pull−down menu.

5) A popup window will be shown to choose the Import Wizard.
Expand General and select Existing Projects into Work−
space. Click on Next.

6) On the next screen, check the radio button that says Select the
root directory. Click on Browse… and navigate to the folder
containing Navigator BSP installation. Click OK.

7) A project named NavigatorBSP should be visible in the
Projects: list box. Make sure the checkbox next to the project is
selected. Click Finish.

The NavigatorBSP project should now be visible in the Project
Explorer view.
Rev. 2.3

http://www.eclipse.org/downloads/packages/

Page 42 Navigator BSP User’s Guide
5.3 Linux Procedures (continued)

5.3.3 Building Libraries Using Eclipse IDE for C/C++ (continued)

5.3.3.2 Building the Project

After loading the project as described above, the BSP libraries can
be built via Eclipse as follows:

1) Make sure that NavigatorBSP is selected in the Project
Explorer.

2) Click on Project on the menu bar.

3) Click on Build all in the pull−down menu.

This invokes the target all inside lib/Makefile.

A specific target from the Makefile can be invoked as follows:

1) Make sure that NavigatorBSP is selected in the Project
Explorer.

2) Click on Project on the menu bar.

3) Click on Build Targets in the pull−down menu and select
Build… from the sub−menu.

4) In the Build Targets popup window, choose a desired target
and click Build.

Check the Console view to see the output from CDT Builder. The
Problems view will also aggregate all the warnings and errors
from the compiler.
Rev. 2.3

Navigator BSP User’s Guide Page 43
Chapter 6: Building Navigator BSP Example Programs

6.1 Introduction

This chapter provides procedures for building the Navigator BSP libraries:

 Section 6.2 − Windows Procedures

 Section 6.3 − Linux Procedures

6.2 Windows Procedures

Example programs are provided for Pentek Jade boards. All libraries and programs are
built using Microsoft Visual Studio Professional 2015. Microsoft Visual Studio files are
provided for building each example program. The 71nnn\examples directory contains one
solution file (*.sln) and one project file (*.vcxproj) for each example program. A
readme.txt file describes the example programs. It is recommended that the solution file
(file extension .sln) be loaded first.

NOTE: Pentek provides pre−built libraries and executable example programs.
The “release” versions of the examples can be run directly from the system
command prompt. When initially running the “debug” versions under
Microsoft Visual Studio, a warning will be issued:

 This project is out of date:
 Would you like to build it?

This is because Pentek does not provide object files. Pentek does provide
debug database files, so the programs can be executed without building them.
Attempting to debug any of the library routines will also cause warning mes−
sages.

To avoid any warning messages, first rebuild the library, then rebuild the
example program.

6.2.1 Building Example Programs Using Msbuild

Solution and project files are provided for each example program. For exam−
ple, the show_info example has show_info.sln and show_info.vcxproj. These
files are found in the example program directory. Compiling with
msbuild.exe, provided in the Visual Studio package, assumes the Navigator
NAVBSP and NAV_BSP_DRVR environment variables are properly set.
Rev. 2.3

Page 44 Navigator BSP User’s Guide
6.2 Windows Procedures (continued)

6.2.1 Building Example Programs Using Msbuild (continued)

To build the example program from the command line, call msbuild with the
following syntax (where example is the name of the desired example pro−
gram):

msbuild example.sln /t:example /p:configuration=Debug

or

msbuild example.sln /t:example /p:configuration=Release

For example, to build the show_info program for release:

msbuild show_info.sln /t:show_info /p:configuration=Release

6.2.2 Building Example Programs Using Microsoft Visual Studio

Microsoft Visual Studio files are provided for building each example pro−
gram. The 71nnn\examples directory contains one solution file and one project
file for each example program. A readme.txt file describes the example pro−
grams.

6.2.2.1 Loading a Project

1) Start Microsoft Visual Studio.

2) Click on File on the menu bar.

3) Click on Open Project/Solution in the pull−down menu.

4) Browse to one of the example directories
(e.g., c:\Pentek\BSP\BSP_X.Y\71nnn\examples\examplename)
(where X.Y is the Navigator BSP version number, 71nnn is the
board model number, and examplename is the name of the
example).

5) Double click on the desired file, either *.sln or *.vcxproj (for
example, acquire.sln).

6) The selected project (acquire, for example) is automatically
loaded and ready to be built.
Rev. 2.3

Navigator BSP User’s Guide Page 45
6.2 Windows Procedures (continued)

6.2.2 Building Example Programs Using Microsoft Visual Studio
(continued)

6.2.2.2 Building a Project

Once the selected project (acquire, for example) is loaded (as
described in Section 6.2.2.1), the project can be built as follows:

1) Click on Build and then select Build acquire.exe.

2) A Build Output window will open, showing the build process.
When the build completes, the following message is displayed:

acquire - 0 error(s), 0 warning(s)

3) The exe file is created in a projects sub−directory (under the
71nnn\examples directory), Debug or Release.

To choose between Debug and Release configurations, click on
Build and select Active Configuration. A popup window will
be displayed with choices for either configuration. Select the
desired one and click OK.

6.2.2.3 Executing an Example Program

To execute the example program, click on Debug and either select
Start Debug to start the Window Debugger, or select Start with−
out Debugging to just run the example.

NOTE: Starting the debugger will require rebuilding the
example.
Rev. 2.3

Page 46 Navigator BSP User’s Guide
6.3 Linux Procedures

Board−specific example programs utilizing the Navigator BSP are supplied as part of
the Navigator Suite. The 71nnn\examples directory contains a Makefile to build the
example programs.

NOTE: Pentek does not provide pre−built libraries and executable example programs
for the Linux platform.

6.3.1 Building the Example Programs from the Command Line

Individual Navigator example programs are placed within sub−directories of
the 71nnn\examples directory. Each sub−directory also contains an example−
specific Makefile. This way, individual examples can be built from within
their sub−directories and also from the parent directory. All examples can be
built at once from the parent directory.

The makefiles have several invocation targets. Executing make or make all
from the 71nnn\examples directory will build all the example programs for that
board. Refer to the documentation within a Makefile for a detailed explana−
tion of all available targets.

6.3.2 Building Example Programs Using Eclipse IDE for C/C++

Navigator Suite for Linux systems includes project files for building and
debugging the board−specific example programs in Eclipse IDE. The Eclipse
project relies on Makefile (mentioned in Section 6.3.1) to build the executables.
However, the IDE provides a superior experience while editing, building, and
debugging the source code.

The Navigator examples projects reference the BSP library project to provide a
seamless development experience. Step−by−step debugging as well as
attaching the debugger to a running application are also possible.

The relevant project description files (.project, .cproject) are present in the
BSP root directory. To be able to successfully import this project into Eclipse,
the CDT (C/C++ Development Tooling) plugin must be installed in the base
IDE. Eclipse Foundation also provides customized versions of the base Eclipse
IDE which focus on certain classes of users.

Go to http://www.eclipse.org/downloads/packages/ and download and
install the latest Eclipse IDE for C/C++ Developers package to quickly get
started with development.
Rev. 2.3

http://www.eclipse.org/downloads/packages/

Navigator BSP User’s Guide Page 47
6.3 Linux Procedures (continued)

6.3.2 Building Example Programs Using Eclipse IDE for C/C++
(continued)

6.3.2.1 Loading the Project

1) Start Eclipse IDE for C/C++. Make sure that the Eclipse
graphical environment has access to the NAVBSP, NAVBSP_DRVR,
and LD_LIBRARY_PATH environment variables. An easy way to
accomplish this is to export those variables from a terminal
window and then launch the Eclipse executable from there.
These commands can also be bundled into a script for ease of
use.

2) Create or open the Workspace for Navigator. We recommend
using a dedicated workspace for working on the Navigator
library and associated applications.

3) Click on File on the menu bar.

4) Click on Import… in the pull−down menu.

5) A popup window will be shown to choose the Import Wizard.
Expand General and select Existing Projects into
Workspace. Click on Next.

6) On the next screen, check the radio button that says Select the
root directory. Click on Browse… and navigate to the folder
containing Navigator Examples installation for a particular
board model. Click OK.

7) A project named NavigatorExamples_71nnn should be visible in
the Projects: list box. Make sure the checkbox next to the
project is selected. Click Finish.

The NavigatorExamples_71nnn project should now be visible in the
Project Explorer view. To be able to successfully resolve the sym−
bols and function names used in the example source files, the Nav−
igatorBSP project must have been imported in the Workspace.
Rev. 2.3

Page 48 Navigator BSP User’s Guide
6.3 Linux Procedures (continued)

6.3.2 Building Example Programs Using Eclipse IDE for C/C++
(continued)

6.3.2.2 Building the Project

After loading the project as described above, the BSP libraries can
be built via Eclipse as follows:

1) Make sure that NavigatorExamples_71nnn is selected in the
Project Explorer.

2) Click on Project on the menu bar.

3) Click on Build all in the pull−down menu.

This invokes the target all inside lib/Makefile.

A specific target from the Makefile can be invoked as follows:

1) Make sure that NavigatorExamples_71nnn is selected in the
Project Explorer.

2) Click on Project on the menu bar.

3) Click on Build Targets in the pull−down menu and select
Build… from the sub−menu.

4) In the Build Targets popup window, choose a desired target
and click Build. New targets can also be added this way.

Check the Console view to see the output from CDT Builder. The
Problems view will also aggregate all the warnings and errors
from the compiler.

6.3.2.3 Executing an Example Program from the Project

Each example program has an associated Eclipse launch configu−
ration for its executable. After the executable has been built, run it
as follows:

1) Click on Run on the menu bar.

2) Click on Run Configurations... in the pull−down menu.

3) In the Run Configurations popup window, choose a desired
configuration under C/C++ Application and click Run. New
configurations can also be added this way. The launch settings
such as command line arguments and working directory can
also be changed from here. Consult the Eclipse documentation
for details.
Rev. 2.3

Navigator BSP User’s Guide Page 49
6.3 Linux Procedures (continued)

6.3.2 Building Example Programs Using Eclipse IDE for C/C++
(continued)

6.3.2.3 Executing an Example Program from the Project (continued)

Alternatively, you can run the executables directly from the Proj−
ect Explorer. Expand the Binaries tree item in the entry for a par−
ticular project and right−click on an executable. Click on Run As
and select C/C++ Application.

To debug the executable, run it as follows:

1) Click on Run on the menu bar.

2) Click on Debug Configurations... in the pull−down menu.

3) In the Debug Configurations popup window, choose a
desired configuration under C/C++ Application and click
Debug. New configurations can also be added this way. The
launch settings like command line arguments and working
directory can also be changed from here. Consult the Eclipse
documentation for details.

Alternatively, you can debug the executables directly from the
Project Explorer. Expand the Binaries tree item in the entry for a
particular project and right−click on an executable. Click on
Debug As and select C/C++ Application.

To attach the debugger to a running executable:

1) Click on Run on the menu bar.

2) Click on Debug Configurations... in the pull−down menu.

3) In the Debug Configurations popup window, choose a
desired configuration from C/C++ Attach to Application and
click Debug. You will then be asked to select a running process
on your system. New configurations can also be added from
this window. Consult the Eclipse documentation for details.
Rev. 2.3

Page 50 Navigator BSP User’s Guide
6.3 Linux Procedures (continued)

6.3.3 Creating an Eclipse Project for Custom Applications

Having an Eclipse project is very useful while working on applications based
on the Navigator BSP Library. Users can simply create a new sub−directory
within the 71nnn\examples directory and modify the Makefile from another
example to work for their program.

However, isolating the user applications into a separate project of their own is
safer because the BSP and examples can be upgraded without affecting user
applications. The following steps describe how to create a new Eclipse project
for an application that relies on Navigator BSP.

1) Start Eclipse IDE for C/C++. Make sure that the Eclipse graphical envi−
ronment has access to the NAVBSP, NAVBSP_DRVR and LD_LIBRARY_PATH envi−
ronment variables. An easy way to accomplish this is to export those
variables from a terminal window and then launch the eclipse binary from
there. These commands can also be bundled into a script for ease of use.

2) Create or open the Workspace for Navigator. We recommend using a
dedicated workspace for working on Navigator library and associated
applications.

3) Click on File on the menu bar.

4) Click on New and select one of the following:

• Makefile Project with Existing Code

Choose this option if the source code and Makefile already
exist or if you plan to add them yourself later on. Makefiles
from 71nnn\examples can be reused for this purpose. This is
the recommended choice.

• C++ Project or C Project

Choose one of these to create a new C++ or C project, respec−
tively, using a configuration wizard. By default, Eclipse will
automatically generate Makefiles for these project types. In
such a case, advanced configuration must be done to set com−
piler and linker flags. After creating such a project, change the
compiler settings from Project > Properties > C/C++ Build >
Settings.
Rev. 2.3

Navigator BSP User’s Guide Page 51
6.3 Linux Procedures (continued)

6.3.3 Creating Eclipse Project for Custom Applications (continued)

5) Once a project has been created, it needs to be configured such that the
Eclipse C/C++ indexer is able to resolve the various symbols and function
names present in the Navigator Library. When these symbols and func−
tions are used in the client application, Eclipse will be able to provide code
completion and helpful tooltips. An XML file with the required settings is
present in the 71nnn\examples directory.

a) Go to Project > Properties > C/C++ General > Paths and
Symbols.

b) Click on Import Settings…

c) Click on Browse in the popup widow and navigate to the
71nnn\examples directory.

d) Select the EclipseProjectSettings_Exported.xml file and click
OK.

e) Make sure that the correct project is selected in the window
and click Finish.

A list of required include locations and symbols is given below in case
manual entry becomes necessary.

Includes:

• ${NAVBSP}/include

• ${NAVBSP_DRVR}

• ${NAVBSP_DRVR}/include

• ${NAVBSP_DRVR}/kplugin

Symbols:

• LINUX

• __KERNEL__

6) Add a reference the NavigatorBSP project to make sure dependencies are
built first. Go to Project > Properties > Project References. Select the
NavigatorBSP project if it is present and click OK.
Rev. 2.3

Page 52 Navigator BSP User’s Guide
6.3 Linux Procedures (continued)

6.3.3 Creating Eclipse Project for Custom Applications (continued)

7) Rebuild the index to make sure all tokens are resolved.

Select Project > C/C++ Index > Rebuild.

8) After updating the source files, build the executable as follows:

Select Project > Build all.
Rev. 2.3

Navigator BSP User’s Guide Page 53
Chapter 7: Anatomy of a Typical Application

In this chapter we will examine how a typical user application based on the Navigator
BSP is constructed. The API calls available in the BSP library simplify the tasks of set−
ting up and operating the hardware resources available in Pentek boards. Additional
API calls help in performing utilitarian tasks such as obtaining program arguments,
storing/analyzing the signal, or creating register dumps for debugging.

Readers can follow along with the acquire example in the Navigator BSP to see code
pertaining to the logical sections of a typical application described below. For conve−
nience, code snippets are also shown in this document. Bold text in the snippets is used
to highlight important tokens.

7.1 Obtain Program Arguments

Most applications are built with a degree of flexibility to cater to different scenarios.
The runtime behavior of the application can be changed through arguments supplied
either at launch or during execution. The Navigator BSP Command Line Utility was
designed to take care of these needs by supporting some common arguments out of the
box. This utility also supports reading program arguments stored in a file (.ini file).
For more information about the command line utility, see Appendix A.

All the high−level API routines in Navigator BSP return a specific status code that can
be used to determine the cause of failure, if any. A special array of strings holds a tex−
tual description for each status code. Its usage is also shown in the snippet below.

7.2 Initialize the Device Driver

The bedrock of Navigator BSP is the device driver. The device driver works with the
operating system and allows us to open a PCIe device for read/write access. It maps
the internal memory of the hardware to the host RAM such that a user−space applica−
tion can read or write to it. The driver also manages hardware interrupts from the
device. Before an application can start interacting with the device driver, the driver
resources must be initialized.

int32_t status;
NAV_CMD_PARAMS cmdParams = {0};
status = NAVcmd_ConstructArgs(&cmdParams,
 argc, &argv[0]); /* arguments to main() function*/
printf("ConstructArgs Result: %s\n", NavApiStatus[status]);
Rev. 2.3

Page 54 Navigator BSP User’s Guide
7.2 Initialize the Device Driver (continued)

The Navigator BSP provides a simple wrapper function to initialize the driver. The ini−
tialization must be done once per application. More than one application can utilize the
device driver simultaneously. However, the same board must not be accessed concur−
rently from different applications.

7.3 Open a Board

Once the driver has been initialized, it can be asked to open a particular board model. A
list of all Pentek boards found on the host system also can be obtained to narrow down
the available choices. When a board is opened, the user application receives an abstract
reference (a handle) to that board’s resources. The handle is intended to be opaque
from the perspective of user applications. This handle must be used in future API calls
to set up the board. For details, refer to the documentation in the nav_api.c file.

status = NAV_BoardStartup();

uint32_t numBoards;
NAV_DEVICE_INFO *pciDeviceInfo[NAV_MAX_BOARDS];
void *boardHandle;

/* Find all Pentek Boards */
status = NAV_BoardFind(0, pciDeviceInfo, &numBoards);

/* Or, find all 71861 boards */
status = NAV_BoardFind(0x71861, pciDeviceInfo, &numBoards);

/* Select a board to open via an interactive list */
boardHandle = NAV_BoardSelect(numBoards, 0, pciDeviceInfo[0], 0);
Rev. 2.3

Navigator BSP User’s Guide Page 55
7.4 Initialize Application−Specific Resources

Every application needs to initialize or allocate some resources to perform its task. This
is a good time to initialize some of those resources since we can be sure that a board has
been found and opened. If there was an error while initializing the driver or opening a
board, the application can avoid initializing resources that will never be used.

Introduced in the snippet above is the Navigator BSP's built−in support for some plat−
form−specific system calls. The BSP provides a unified interface to operating−system−
specific mechanisms, which primarily deal with multi−threading and synchronization
primitives but also provide other helper routines.

The context structure is used to hold the states or handles of system resources used
within a piece of code. For details about this interface, refer to the documentation in the
nav_sys.c file.

7.5 Set Up Board Resources

After a board has been opened, the user application should initialize it for a particular
use case. Although it is technically possible to access individual registers in the board,
the Navigator BSP provides a high−level API to set up logically separate resources of
the board in one or two API calls. For example, the board clock, A/D converter, and
DMA engine can all be configured with only a few function calls. Note that other fea−
tures of the hardware like sync source, gate source, and triggering mechanism also
must be set up before starting the acquisition.

These function calls are present in resource−specific source files (e.g., nav_adc.c,
nav_ddc.c, nav_dma.c) and have the word Setup in their names (e.g., NAV_AdcSetup(),
NAV_DdcSetup(), NAV_DmaSetup()). These high−level functions accept generic arguments
for all boards, perform standard validation on them, and then call their board−specific
counterparts, which carry out the actual implementation for a particular board. This
approach helps in maintaining a uniform API for all user applications while still allow−
ing flexibility of implementation within the library for different hardware products.

NAV_SYS_CONTEXT appSysContext;
FILE *applicationLog;

/* Initialize the context created for
 * system-specific resources (like semaphores) */
NAVsys_Init(&appSysContext);

/* Open files or allocate memory as needed... */
applicationLog = fopen("logfile.txt", "w");
Rev. 2.3

Page 56 Navigator BSP User’s Guide
7.5 Set Up Board Resources (continued)

All of these setup functions also accept a 64−bit integer argument named 'options' (see
Appendix A). This argument is only applicable to certain boards and provides a way
for users to choose some feature that is available on that board itself. For example, on
Model 71841 the ADC chip supports a dual−edge sampling mode (DES mode) which
effectively doubles the sampling rate but sacrifices the second input channel. If you
want to use this feature, you should supply the proper values via the 'options' argu−
ment. For most boards, this value should be 0. The list of valid values can be seen in the
description for the setup function.

Program arguments obtained in the first step of the application can be used while call−
ing these “Setup” functions, as demonstrated in Navigator BSP example programs like
acquire. The snippet on the next page shows hardcoded arguments for simplicity and
clarity.
Rev. 2.3

Navigator BSP User’s Guide Page 57
7.5 Set Up Board Resources (continued)

/* CLOCK
 * Use 200 MHz internally generated clock for ADC sampling rate,
 * with a 10 MHz reference supplied to front-panel CLK connector. */
status =
NAV_ClockSetup(boardHandle,
 NAV_CLOCK_INT, /* Board Clock Source */
 200.0e6, /* Board Clock Frequency */
 10.0e6, /* Reference Clock Frequency */
 200.0e6, /* ADC Clock Frequency */
 0.0e6, /* DAC Clock Frequency */
 0.0e6, /* ADC Test Signal Frequency */
 0.0e6, /* DAC Test Signal Frequency */
 0); /* Board-specific options */
}

/* ADC
 * Set ADC Channel 1 in Gate mode, generating 16-bit real samples
 * with data source as front-panel IN1 connector. */
status =
NAV_AdcSetup(boardHandle,
 NAV_CHAN_1, /* Channel being configured */
 NAV_CHAN_1, /* Data source */
 NAV_ADC_FORMAT_16BIT_REAL_PACKED, /* Data packing format */
 0); /* Board-specific options */

/* DMA
 * Set DMA Channel 1 in Continuous mode, acquiring 2 MiB of data per buffer
 * segment with 20 such buffers in use. */
status =
NAV_DmaSetup(boardHandle,
 NAV_CHANNEL_TYPE_ADC, /* ADC data */
 NAV_CHAN_1, /* Channel being configured */
 20, /* Number of buffers */
 2U * (1<<20), /* Buffer size */
 NAV_DMA_METADATA_ENABLE, /* FPGA will provide metadata */
 NAV_DMA_RUN_MODE_CONTINUOUS_LOOP, /* Operating mode */
 NAV_SYS_WAIT_STATE_MILSEC(15000), /* Timeout period */
 &dmaCallbackHandler, /* DMA callback handler */
 boardHandle, /* Data pointer for the handler */

 0); /* Board-specific options */
Rev. 2.3

Page 58 Navigator BSP User’s Guide
7.6 Dump the Register State for Debugging Purposes

The user application can dump the register state of the device at any particular time to
help with future debugging efforts. The register contents can be dumped to the console
or to a file.

7.7 Start the Data Flow

After configuration is complete, the user application must arm the trigger control state
machine for the acquisition channel. Arming activates the acquisition channel such that
it is ready to accept a gate or trigger signal which will start the acquisition process. The
application can then start data flow by opening gates or generating triggers.

Gates and triggers are signals that tell the FPGA to start data transfer. Depending on
the hardware, the gate/trigger signal can be supplied internally via register bit tog−
gling or externally via a connector on the front panel. (For details about a particular
product, please refer to its operating manual.) For simplicity, internal gating is shown
in the snippet below. API calls are available to manipulate these gates for both incom−
ing (A/D) and outgoing (D/A) directions.

printf("Register state after resource configuration:\n");
status = NAV_IPRegDump(boardHandle, stdout);

/* Arm the trigger control state machine for ADC Channel 1 */
status = NAV_TrigArm(boardHandle,
 NAV_CHANNEL_TYPE_ADC,
 NAV_CHAN_1);

/* Open internal gate for ADC Channel 1 (local gate will affect only this channel)
*/
status = NAV_LocalGateOpen(boardHandle,
 NAV_CHANNEL_TYPE_ADC,
 NAV_CHAN_1);
Rev. 2.3

Navigator BSP User’s Guide Page 59
7.8 Manage Data Transfer

Pentek boards use Direct Memory Access (DMA) to efficiently transfer data between
the device and host memory. A special software framework for handling the minutiae
of DMA operation is built within the Navigator BSP. If an application has requested
DMA support while calling NAV_DmaSetup(), the library will provide a callback to a
function within the user code, in response to certain events of interest. This callback
will provide a status code along with pointers to DMA buffers in host memory and
application−specific data. By looking at the status code, the application’s DMA callback
handler can decide which action to take. See Appendix C for details on this framework.

/* Typical implementation of a DMA callback handler for incoming A/D data.
 * This function will be executed by the library in a separate thread
 * for each channel, whenever user code needs to be notified of a DMA event.
 * For example, when the hardware has filled up a DMA buffer, the user code
 * can start using that data from this function. */
void dmaCallbackHandler (int32_t channel, int32_t dmaStatus,
 void *dataBuffer, void *metaDataBuffer,
 void *userData)
{
 NAV_DMA_ADC_META_DATA *metaData;
 void *boardHandle = userData;

 /* If a DMA buffer has been filled, act on it */
 if(dmaStatus & NAV_STAT_DMA_LINK_END)
 {
 /* Print useful metadata */
 metaData = (NAV_DMA_ADC_META_DATA *)metaDataBuffer;
 printf(stdout, "MetaData ValidBytes %u\n",
 metaData->validBytes);
 printf(stdout, "MetaData Counter %d\n\n",
 metaData->packetCounter);

 /* Save data buffer to a file */
 NAV_WriteDataFile(dataFile[channel], dataBuffer,
 metaData->validBytes,
 NAV_DEBUG_FILE_FORMAT_BIN,
 NAV_DEBUG_DATA_WIDTH_16BIT);

 /* Send portion of the data buffer to Signal Viewer */
 NAVview_SendData(boardHandle,
 channel,
 dataBuffer,
 NAV_VIEW_BLK_SIZE_DEFAULT);
 }
}

Rev. 2.3

Page 60 Navigator BSP User’s Guide
7.8 Manage Data Transfer (continued)

As shown in the code snippet above, the Navigator BSP includes a function to save the
data buffer to a file. Data can be stored in both binary and ASCII formats. For more
information, refer to the documentation in the nav_debug.c file.

Navigator BSP also provides a a Signal Viewer that enables you to look at an incoming
signal during acquisition. Both time−domain and frequency−domain representations
are shown. For more information about the Signal Viewer, see Appendix B.

7.9 Handle Hardware Interrupts

Depending on the requirements, a user application may need to be notified of certain
hardware events. For example, an application running on an externally supplied clock
signal should stop normal operation when the clock signal is lost. This application can
enable an interrupt for a clock−loss event such that the interrupt handler function is
invoked by the device driver when the hardware discovers a loss of clock signal. The
snippet on the next page shows how this can be achieved.

For more information, refer to the documentation in the nav_intr.c file. Available
interrupt sources and events may vary from board to board, so please consult the oper−
ating manual for the hardware as well.

The mask for the desired interrupt itself will also depend on the IP core that is imple−
menting that interrupt source. For example, the Clock A interrupt source is imple−
mented using px_cdc_clk_intrfc core on Model 71861 while the same source is
implemented on Model 71841 using px_sample_clk_rcvr core.
Rev. 2.3

Navigator BSP User’s Guide Page 61
7.9 Handle Hardware Interrupts (continued)

/* Enable the interrupt for clock-loss detection.
 * Do this while setting up the board resources. */
status = NAV_InterruptEnable(boardHandle,
 NAV_INTR_DATA_IO_CLOCK_A, 0,
 NAV_IP_CDC_CLK_INTRFC_INTR_CLK_NOT_OK,
 &clockLostIntrHandler, NULL);

/* Interrupt handler for ClockNotOk event.
 * This function will be executed by the driver in a separate thread,
 * when the hardware raises the interrupt associated with this handler. */
void clockLostIntrHandler(void *hDev,
 int32_t intSource,
 int32_t instance,
 uint32_t intFlag,
 int32_t numInterrupts,
 int32_t numLostInterrupts,
 void *pData)
{
 if (intFlag & NAV_IP_CDC_CLK_INTRFC_INTR_CLK_NOT_OK)
 {
 printf("Clock loss detected...\n");
 // Stop the application
 }
 else
 return;

}

Rev. 2.3

Page 62 Navigator BSP User’s Guide
7.10 Stop the Data Flow

If the goals of the application have been met or any other termination condition is
encountered, the data flow should be stopped. The application must disarm the trigger
control state machine for the acquisition channel. Disarming will deactivate the acqui−
sition channel such that it will not respond to a new gate or trigger signal. If controlled
by software, the application should also close the gates or stop the trigger generation.
As noted earlier, the gate or trigger can also come from external signals. For simplicity,
an internal gate is shown in the snippet below.

7.11 Free up the Resources

In preparation for exiting the application, any resources that were allocated during the
execution will need to be properly freed.

/* Disarm the trigger control state machine for ADC Channel 1 */
status = NAV_TrigDisarm(boardHandle,
 NAV_CHANNEL_TYPE_ADC,
 NAV_CHAN_1);

/* Clear existing trigger */
status = NAV_TrigClear(boardHandle,
 NAV_CHANNEL_TYPE_ADC,
 NAV_CHAN_1);

/* Close internal gate for ADC Channel 1 (local gate will affect only this
channel)*/
status = NAV_LocalGateClose(boardHandle,
 NAV_CHANNEL_TYPE_ADC,
 NAV_CHAN_1);

/* Destroy the context created for
 * system-specific resources (like semaphores) */
NAVsys_UnInit(&appSysContext);

/* Close files or free memory as needed... */
fclose(applicationLog);
Rev. 2.3

Navigator BSP User’s Guide Page 63
7.12 Close the Board

This step frees the resources allocated within the BSP library for working with a partic−
ular board. Once a board is closed, it cannot be accessed by the handle that was
received on opening the board.

7.13 Uninitialize the Driver

Similar to the previous step, this frees up the resources created within the device driver
for supporting the current application.

7.14 Exit the Application

This is the last step!

status = NAV_BoardClose(boardHandle);

NAV_BoardFinish();
Rev. 2.3

Page 64 Navigator BSP User’s Guide
This page is intentionally blank
Rev. 2.3

Navigator BSP User’s Guide Page 65
Chapter 8: Adding an IP Core to the Navigator BSP

8.1 Introduction

The process of creating your own IP core includes generating a document similar to the
documents Pentek provides for each Pentek IP core. Your document will help guide
you in creating support code to be added to the Pentek’s Navigator Board Support
Package (BSP).

For each Pentek IP core, there is a companion Navigator BSP header and source file (see
Chapter 2 and Section 2.3). The filenames are the same, except for the filename exten−
sion. We recommend that you follow the same method.

The main problem with adding support for your IP module to the Navigator BSP is
that, if the BSP is updated, you'll have to add code for your module to the updated BSP.
To make this easier, we suggest that you create your own library. If you create your
own library, only references to your library will have to be added to an updated BSP.

8.2 Create Your Library Files

The document you create for your IP core should include a section for the register
space, which will define all register address offsets from the IP module base address.
Since an IP module can be used multiple times in a design, the module base address is
project−specific. For creating your support files, you will need the module base
address. It is added to the Pentek library later.

The first file you'll need to create is a header file. This file will contain defines for regis−
ter offsets, register bit fields, function prototypes, etc., to support your IP module.

If you take a look at a few Pentek IP core header files, you'll see that most of these files
start with register offset defines. For example, in the header file px_ads5485intrfc.h, the
first two register offset defines are as follows:

 /* Control Register 1 */
 #define NAV_IP_ADS5485_INTRFC_CTRL1_REG 0x00000000

 /* Control Register 2 */
 #define NAV_IP_ADS5485_INTRFC_CTRL2_REG 0x00000004

NOTE: The Pentek documentation shows offsets as 32−bit offsets but the defines are
byte offsets in the header file.

These are followed by a section of bit field and mask defines. In our example header file
(px_ads5485intrfc.h), the Control Register 1 has one 9−bit bit field, from bits D08
through D00, and one single−bit field at bit D09.
Rev. 2.3

Page 66 Navigator BSP User’s Guide
8.2 Create Your Library Files (continued)

The register defines are as follows:

#define NAV_IP_ADS5485_INTRFC_CTRL1_MASK 0x000003FF

#define NAV_IP_ADS5485_INTRFC_CTRL1_DLY_LD_CTL_IDLE 0x00000000
#define NAV_IP_ADS5485_INTRFC_CTRL1_DLY_LD_CTL_LOAD 0x00000200

#define NAV_IP_ADS5485_INTRFC_CTRL1_TAP_DELAY_MASK 0x000001FF

Note the naming convention of these defines:

• The NAV_ prefix indicates that the define is part of the Navigator package.

• The IP_ segment indicates that the define is in the IP Core library.

• ADS5485_INTRFC_ indicates the IP core it supports.

• CTRL1_ indicates the register name.

• This is followed by a bit field identifier and a function identifier.

Any special definitions, structures, etc. will follow. Function prototypes are at the end
of the header file.

You will want to add an include directive to your header file for nav_ip_common.h. This
will give you access to defines, macros, and other resources.

Once you have written the header file, you will create the C source file. The filename
will be the same as the header file, but the extension will be .c. For example, the
px_ads5485intrfc.h header file is matched with a px_ads5485intrfc.c source file.

Besides comments, the first line of code in your source file should be an include state−
ment, which includes the path. For example, in px_ads5485intrfc.c, it is:

#include "ip_include/px_ads5485intrfc.h"

indicating that the header file is in ip_include, below the standard Navigator include
directory.

A typical source file will contain separate set and get functions for each register bit
field, as needed. There are typically higher−level routines that call these set and get
function at the start of a file. For example, in px_ads5485intrfc.c, the first function
found is NAVip_Ads5485Intrfc_InitRegs(), used to set all registers to power−on default
values.
Rev. 2.3

Navigator BSP User’s Guide Page 67
8.2 Create Your Library Files (continued)

A get function typically returns the masked contents of a register. An example from
adc5485intrfc.c follows:

By convention, Pentek routines always return a status, which is a 32−bit value. They do
not return the requested value. Instead, the address of a variable is supplied to the
function. In the above example, the arguments to the function are pointers to the IP
module base address and the variable to hold the return.

The function calls NavRegRead(), which is one of three inline routines used frequently in
IP support functions. The other two commonly used inline routines are NavRegWrite()
and NavRegReadModWrite(). For details, refer to the documentation in the nav_inline.h
file.

A typical set function is shown below.

NOTE: All functions receive only the base address of the module and must supply the
register offset internally.

int32_t NAVip_Ads5485Intrfc_Ctrl1_GetTapDelay(volatile uint32_t *coreBase,
 uint32_t *tapDelay)
{
 if (coreBase == NULL)
 return (NAV_IP_STAT_INVAL_ADDR);
 *(tapDelay) = NavRegRead((coreBase + NAV_IP_REG_OFFSET(NAV_IP_ADS5485_INTRFC_CTRL1_REG)),
 NAV_IP_ADS5485_INTRFC_CTRL1_TAP_DELAY_MASK);
 return (NAV_IP_STAT_OK);
}

int32_t NAVip_Ads5485Intrfc_Ctrl1_SetTapDelay(volatile uint32_t *coreBase,
 uint32_t tapDelay)
{
 if (coreBase == NULL)
 return (NAV_IP_STAT_INVAL_ADDR);
 NavRegReadModWrite((coreBase + NAV_IP_REG_OFFSET(NAV_IP_ADS5485_INTRFC_CTRL1_REG)),
 NAV_IP_ADS5485_INTRFC_CTRL1_TAP_DELAY_MASK, tapDelay);
 return (NAV_IP_STAT_OK);
}

Rev. 2.3

Page 68 Navigator BSP User’s Guide
8.3 Add Your Files to the Library

Once you've finished creating your header and source files, they must be added to the
library in order to use them. We suggest that you bundle your code as an independent
library or shared object and patch it into the Pentek library. This way, if the Navigator
BSP is updated in the future, it will be easier to link your custom library to the applica−
tion without any effect from updates to the Navigator BSP. Examine how the Pentek IP
core library is built and create your own Dynamic Link Library / Shared Object.

Next, you need to decide how your routines will be called. In the Navigator BSP envi−
ronment, the IP core routines are called by board−level routines. For example, for Pen−
tek’s Model 71861 module, code for board−level support is found in the 860_include
and 860_source directories. If you are adding a new IP core to a 71861 module, you may
want to create board−level source and header files in these directories.

Continuing with our Model 71861 example, assume you added a data modification
module that is used at the output of the DDC for all four channels of the 71861. Its
design modifies every data sample coming out of the DDC. It has a control register
with three active bits:

• D00 − Module Enable/Disable − switches the IP module in or out

• D01 − Core Reset − resets the core to power−on state

• D02 − Module Load − loads a new module value

It has one 32−bit wide data modification value register.

Your IP code has XXXX routines:

• MyIPCore_ModEnableDisable()

• MyIPCore_ModReset()

• MyIPCore_ModLoad()

• MyIPCore_GetModValue()

• MyIPCore_SetModValue()

Since there are four DDC channels, there are four instances of this new core. Assume
the cores are accessed in User Block 1 and have base addresses as follows:

• DDC Channel 1: 0x03000000

• DDC Channel 2: 0x03001000

• DDC Channel 3: 0x03002000

• DDC Channel 4: 0x03003000
Rev. 2.3

Navigator BSP User’s Guide Page 69
8.3 Add Your Files to the Library (continued)

Here are the rest of the steps for our Model 71861 example scenario:

1) Add defines for the four addresses in nav860_mem_map.h or create a special header for
your IP core containing these addresses.

2) Create entries in the NAV_IP_ADDR_TABLE address table for the new base addresses. For
example:

volatile uint32_t *modDdc[NAV_MAX_DDC_CHANNELS];

3) Create a 71861 source file containing board−level routines. In this example, the low−
level routines may be sufficient for calling from the API level but assume it's desirable
to have one routine that sets mod value and loads it. So, you will write a board−level
routine called MyDDCMod_LoadModValue() that calls MyIPCore_SetModValue() and
MyIPCOre_ModLoad().

4) Create a 71861 header file for your source file that contains function prototypes, etc.,
as needed.

5) Add an include statement for your header to nav860.h.

6) Add your source file to the 860 compile chain and rebuild.

7) Make a list of what you created and where you put it, so you can add your IP module
to future BSP updates.
Rev. 2.3

Page 70 Navigator BSP User’s Guide
This page is intentionally blank
Rev. 2.3

Navigator BSP User’s Guide Page 71
Chapter 9: Troubleshooting

If you cannot find the help you need in this chapter, refer to our website for more help:
http://www.pentek.com/support

9.1 Cannot run the examples’ executable (Windows)

Problem: After installing the Navigator BSP for Windows, you are not able to run the
examples' executable (either the Debug or Release version).

Possible messages shown on executing the application:

• The program can't start because api-ms-win-crt-runtime-l1-1-0.dll is missing
from your computer. Try reinstalling the program to fix this problem.

• The program can't start because ucrtbased.dll is missing from your computer.
Try reinstalling the program to fix this problem.

Solution: Your system is missing runtime components for running Windows applica−
tions. Refer to the NOTE in Section •.

9.2 DMA Thread cannot be created (Linux)

Problem: While running an application based on the Navigator BSP, you encounter a
status code for NAV_STAT_DMA_THREAD_CREATION_FAIL.

Solution: This error usually indicates that a system−imposed limit on resource usage
has been reached. The most common cause would be the exhaustion of available
resources for message queues. Navigator BSP’s DMA threads rely on message queues
for inter−thread communication and will not run if such queues could not be created.

First, ensure that no orphaned message queues are present on the system. The BSP nor−
mally destroys all message queues when they are no longer required. However, if the
application crashes for some reason, the queues are left untouched.

To delete the message queues manually, navigate to /dev/mqueue and delete files
belonging to orphaned message queues. Queues created by the BSP are named
penteknav_<PID>_<ContextID>_<DMAChannel>. The PID (process identifier) field can be
used to ensure queues belonging to a running application are not deleted. Rebooting
the system also guarantees that all orphaned queues are destroyed.
Rev. 2.3

http://www.pentek.com/support/support.cfm?HID2=TM

Page 72 Navigator BSP User’s Guide
9.2 DMA Thread cannot be created (Linux) (continued)

If there are no such orphaned message queues inside /dev/mqueue, the system may have
a lower resource limit for POSIX message queues than required by the DMA Threads.
Linux imposes a limit on the maximum memory allowed for use by POSIX message
queues. A low value of this limit (819200 bytes by default) will prevent multiple DMA
threads from running simultaneously, especially if other applications are also using
POSIX message queues.

Copy the following two lines to your /etc/security/limits.conf file to raise the default
limit.

The number in the last column can be changed, if needed. Consult the ulimit man
page or the limits.conf file for further information. The installer for Navigator BSP on
Linux will modify the limits.conf file during installation. If the installer is not used,
the limit must be raised manually (as a superuser). It is necessary to log out and log
back in for the changes in limits.conf to take effect.

A much rarer cause could be that the system−imposed limit on the number of threads
was exceeded. Consult the manual entry for pthread_create to find out details on this
limit.

9.3 Installing LabVIEW RTE on non−RPM−based systems (Linux)

Problem: The LabVIEW Runtime Environment fails to install with the following error
message:

This install script supports only RPM-based package installation system. Installa-
tion aborted.

Solution: National Instruments only provides RPM packages for LabVIEW and offi−
cially supports Red Hat Enterprise Linux Desktop + Workstation 5 or later, openSUSE
11.4 or later, or Scientific Linux 6 or later. These distributions use the RedHat Package
Manager (RPM).

For distributions that do not use RPM, a Linux utility called alien can be used to con−
vert the rpm packages to a different format like Debian’s dpkg. Be very careful while
using the alien utility to install unsupported packages on a system. Usage instructions
for alien on Ubuntu can be found here.

To successfully run a LabVIEW−based application like Navigator Signal Viewer, some
prerequisites must also be installed as mentioned in this National Instruments Knowl−
edge Base.

* hard msgqueue 4915200
* soft msgqueue 4915200
Rev. 2.3

https://help.ubuntu.com/community/RPM/AlienHowto
http://digital.ni.com/public.nsf/allkb/A4FDECBA6BD83E2A86257CE8005A22C3
http://digital.ni.com/public.nsf/allkb/A4FDECBA6BD83E2A86257CE8005A22C3

Navigator BSP User’s Guide Page 73
9.4 Illegible fonts in Navigator Signal Viewer (Linux)

Problem: When you launch the Navigator Signal Viewer, the text labels are illegible or
appear to be in a language other than English.

Solution: This issue is caused by missing fonts for the X Window System. To fix the
problem, install 100−dpi and 75−dpi versions of the X.Org Fonts package for your dis−
tribution. Corresponding package names for popular distributions are provided below:

You may need to reboot the system before the changes will take effect.

9.5 Windows 10 update may cause driver and reserve memory issues

Problem: When Windows 10 updates overnight, the update may cause issues with the
Pentek driver. Windows Device Manager will show that the driver for Pentek boards is
installed and working properly, but the device will fail to open via BSP routines. Also,
the updates may reset the reserve memory functionality used to dedicate a portion of
the RAM for DMA purposes.

Solution: To fix this problem, reinstall the Navigator Driver and reapply the remove
memory command.

1. Manually install the driver by following the instructions in Section 3.3.6.1.

2. If the reserved memory functionality is being used, reapply the command:

bcdedit /set removememory <size in megabytes>

Fedora / RedHat / CentOS xorg−x11−fonts−100dpi xorg−x11−fonts−75dpi

Debian / Ubuntu xfonts−100dpi xfonts−75dpi xfonts−scalable

Arch xorg−fonts−100dpi xorg−fonts−75dpi
Rev. 2.3

Page 74 Navigator BSP User’s Guide
This page is intentionally blank
Rev. 2.3

Navigator BSP User’s Guide Page A−1
Appendix A: Navigator BSP Command Line Utility

A.1 Introduction

The command line utility provides flexibility when running the Navigator BSP exam−
ple programs. It allows you to change some common program options without needing
to rebuild the examples. The command line utility is part of the BSP's utility library
(NavBSP_util). It is available for the ADC, DDC, DAC, and DUC examples. It also pro−
vides basic validations on the option values that are passed to the interface.

The command line utility provides two ways to change an example program’s default
execution options for different operating modes: via command prompt and ini files.

 Command prompt − This is the traditional command line argument feeding method.
Program options can be changed by entering the different command line arguments
and options at the command prompt. The syntax is -<argument> <option> (for
example, -model 71861). Section A.2 lists all the command−line arguments.

 Initialization files (.ini files) − Rather than typing the command line arguments
each time you run an application, the arguments are retrieved from an ini file. In the
ini file, the argument and its option must be separated by an equals (=) sign (for
example, model=71861).

Each example in the BSP may have one or more associated ini files in the program's
source directory. The default ini file is named <program>_default.ini.

When you specify an ini file with a -ini <filename> command at the command
prompt, the command line utility will read and process the specified ini file. If you
don’t specify an ini file, the command line utility will search in the current directory
for the default ini file for the same program name. If the utility does not find the
default ini file in the current directory, the utility will search inside the parent
directory (..\ for Windows, and ../ for Linux).

For example, if you run the acquire example program, the command line utility will
search in the directory from which the program is running for a file named
acquire_default.ini. If the utility cannot find the file, it will search in the directory
above the directory from which the program is running. If the utility still cannot find
the acquire_default.ini file in the parent directory, some example programs may use
the generic argument options stored in the library.

Section A.2 describes all the initialization files. The files specific to your Jade board
are located in the examples directory.

Note that you can use command line argument options together with saved ini file
argument options. However, arguments issued on the command line have a higher
priority than arguments saved in an ini file. For example, you can save the normal
operating argument options in an ini file, and also modify an option at program run−
time via the command prompt. Instead of opening and modifying the ini file, you can
just enter the desired change at the command prompt with -<argument> <option>.
Rev. 2.4

Page A−2 Navigator BSP User’s Guide
A.2 List of Command−Line Arguments

All arguments and their corresponding options for all the example programs are listed
in this section. Typing the name of an example program followed by -h or -? will list
all the command−line arguments.

NOTE: Argument names are not case−sensitive.

NOTE: Not all arguments or argument options are supported by every example
program. Refer to the default argument list of an individual example
program for the specified supported arguments.

The table below shows the arguments grouped by category. Each argument has a brief
description, but also is linked to a detailed description in the list starting on page A−5.

System−specific arguments

−brd Board index in decimal format

−ini Read from specified .ini file

−model Choose model for program (Module ID)

Common arguments for any ADC, DAC, DDC, or DUC programs

−brdclksrc Board clock source

−brdfreq Board clock frequency

−brdmode Board operation mode

−chanmask Channel mask for single or multichannel operation

−loop Number of loops

−numbuf Number of buffers

−reffreq Reference clock frequency

−xfersize Transfer size in number of bytes/samples

Generic optional arguments

−brdoption Optional option for board setup (unsigned 64−bits)

−clkoption Optional option for clock setup (unsigned 64−bits)

−dmaoption Optional option for DMA setup (unsigned 64−bits)

−gateoption Optional option for gate setup (unsigned 64−bits)

−progoption Optional option for program running (unsigned 64−bits)

−syncoption Optional option for sync setup (unsigned 64−bits)

Arguments only for ADC and DDC programs

-adcdatamode ADC data mode

-adcdatasrc ADC data source

-adcfreq ADC clock frequency rate

−adcgatedly ADC gate tap delay

−adcgatepol ADC gate/trigger polarity
Rev. 2.4

Navigator BSP User’s Guide Page A−3
Arguments only for ADC and DDC programs (continued)

−adcgatesrc ADC gate/trigger signal source

−adcgtrigmode ADC gate/trigger mode selection

−adcindly ADC input tap delay

−adcoption Optional option for ADC setup (unsigned 64−bits)

−adcppspol ADC PPS polarity

−adcppssrc ADC PPS signal source

−adcsyncdly ADC sync tap delay

−adcsyncpol ADC sync polarity

−adcsyncsrc ADC sync signal source

Arguments only for DDC programs

−ddc DDC enabled

−ddcgain DDC gain

−ddcinvert DDC spectrum inversion enabled

−ddcoption Optional option for DDC setup (unsigned 64−bits)

−ddcphase DDC phase in degrees

−decim DDC decimation

−tunefreq Tuning frequency

Arguments only for DAC and DUC programs

−dacdatamode DAC data mode

−dacdatasrc DAC data source

−dacfreq DAC clock frequency rate

−dacgatedly DAC gate tap delay

−dacgatepol DAC gate/trigger polarity

−dacgatesrc DAC gate/trigger signal source

−dacgtrigmode DAC gate/trigger mode

−dacoption Optional option for DAC setup (unsigned 64−bit)

-dacoutdly DAC output tap delay

−dacppspol DAC PPS polarity

−dacppssrc DAC PPS signal source

−dacsyncdly DAC sync tap delay

−dacsyncpol DAC sync polarity

−dacsyncsrc DAC sync signal source

Arguments only for DUC programs

−duc DUC enabled

−ducgain DUC gain

−ducinvert DUC spectrum inversion enabled

−ducoption Optional option for DUC setup (unsigned 64−bits)
Rev. 2.4

Page A−4 Navigator BSP User’s Guide
Arguments only for DUC programs (continued)

−ducphase DUC phase in degrees

−interp Interpolation

−ncofreq NCO frequency

Signal Viewer arguments

−vchanmask Signal Viewer viewing channel mask

−vhost Signal Viewer server host mode

−vport Signal Viewer port number

−vsubchan Signal Viewer viewing sub−channel

ADC data file writing arguments

−wdatafmt Data file format to be written to file

−wfile Data file name to be written with captured data.

−wsize Data size to be written to the file

DAC data file reading arguments

−rdatafmt Data file format to be read from file

−rfile File name of data to be read from

−rsize Data size to be read from the file

Timer − in the form of YYYY:MM:DD, HH:MM:SS (I.e., 2017:12:25, 10:00:00)

−tstart Time start

−tstop Time stop

Multi−board event synchronization server/client arguments

−caddr Client host IP address

−cport Client port number

−saddr Server host IP address

−sport Server port number
Rev. 2.4

Navigator BSP User’s Guide Page A−5
A.2 List of Command−Line Arguments (continued)

-adcdatamode ADC data mode. You can use one of the following options:

• rpk8 − 8−bit real with time packed (4 consecutive samples
stored in one 32−bit word)

• rpk16 − 16−bit real with time packed (2 consecutive samples
stored in one 32−bit word)

• iqpk16 − 16−bit I/Q packed (I and Q samples stored together
in a single 32−bit word)

• iqupk24 − 24−bit I/Q unpacked (I and Q samples stored
separately in 32−bit words, with 24−bits of valid data padded
with 0's in the lower 8 bits)

• iqupk32 − 32 bit I/Q samples unpacked (I and Q samples are
interleavedly stored in 32−bit words)

-adcdatasrc ADC data source. You can use one of the following options:

• adc1 − Analog signal data comes from channel input 1.

• adc2 − Analog signal data comes from channel input 2.

• adc3 − Analog signal data comes from channel input 3.

• adc4 − Analog signal data comes from channel input 4.

• adc5 − Analog signal data comes from channel input 5.

• adc6 − Analog signal data comes from channel input 6.

• adc7 − Analog signal data comes from channel input 7.

• adc8 − Analog signal data comes from channel input 8.

• own − Analog signal data comes from its own corresponding
channel input.

• sine − Analog signal data comes from internal test SINE signal.

• ramp − Analog signal data comes from internal test RAMP
signal.

-adcfreq ADC clock frequency rate, in floating point format. This value
should be a factor of -brdfreq. Valid dividers are 1, 2, 3, 4, 6, 8, and
16.

-adcgatedly ADC gate tap delay

-adcgatepol ADC GATE/TRIG polarity. Valid options are:

• normal − As received, or Rising edge

• invert − Inverted from received, or Falling edge
Rev. 2.4

Page A−6 Navigator BSP User’s Guide
A.2 List of Command−Line Arguments (continued)

-adcgatesrc The source for ADC GATE/TRIG signals. Valid options are:

• off − No signal is provided. A gate/trigger signal is not
generated. Therefore, no ADC output is expected.

• reg − Internal registers are used to generate signals.

• ttl − Front panel TRIG input (SSMC connector, TTL voltage
level)

• sbusttl − Front panel SYNC/GATE input (26−pin sync bus
connector, TTL voltage level)

• sbusdif − Front panel SYNC/GATE input (26−pin sync bus
connector, LVPECL voltage level)

-adcgtrigmode ADC gate, trigger, or trigger hold selection. Valid options are:

• gate − Global gate for all channels

• lgate − Local gate for an individual channel

• trig − Trigger mode

• trighold − Trigger hold mode

• timestamp − Timestamp mode

-adcindly ADC input tap delay

-adcoption A 64−bit optional value used for selecting a special feature of some
boards during ADC setup.

-adcppspol ADC PPS polarity. You can use one of the following options:

• normal − As received, or Rising edge

• invert − Inverted from received, or Falling edge

-adcppssrc The source for ADC PPS signals. Valid options are:

• off − No signal is provided.

• reg − Internal registers are used to generate signals.

• syncsbusttl − TTL SYNC signal from SBUS connector

• gatesrc − Received GATE signal

• syncsbusdif − Diff SYNC signal from front panel 26−pin SBUS
connector

• gatesbusttl − TTL GATE signal from front panel 26−pin SBUS
connector

• gatessmcttl − TTL GATE signal from front panel SSMC
connector
Rev. 2.4

Navigator BSP User’s Guide Page A−7
A.2 List of Command−Line Arguments (continued)

-adcsyncdly ADC sync tap delay

-adcsyncpol ADC SYNC polarity. You can use one of the following options:

• normal − As received, or Rising edge

• invert − Inverted from received, or Falling edge

-adcsyncsrc The source for ADC SYNC signals. You can use one of the
following options:

• off − No signal is provided. A sync signal is not generated.
Therefore, no ADC output is expected.

• reg − Internal registers are used to generate signals.

• ttl − Front panel TRIG input (SSMC connector, TTL voltage
level)

• sbusttl − Front panel SYNC/GATE input (26−pin sync bus
connector, TTL voltage level)

• sbusdif − Front panel SYNC/GATE input (26−pin sync bus
connector, LVPECL voltage level)

• gatesrc − Received GATE signal

-brd Board index in decimal format. Used when multiple Pentek boards
are detected in the same system. Ranges from 1 to 19. In Navigator
BSP example programs, a special value of 0 will provide the
indexes of found boards and prompt you for selection.

-brdclksrc Board clock source. Choose one of the following clock selection
modes for the primary board clock. This board clock is used to gen−
erate other necessary clocks like those for ADC and DAC sampling
frequency. You can use one of the following options:

• int − A clock is generated through the on−board VCXO and a
reference clock is used from the CLK connector if available.

• int_sbusref − A clock is generated through the on−board
VCXO and a reference clock is used from the 26−pin SYNC/
GATE connector if available.

• ext − An externally generated clock is accepted at the CLK
connector.

• ext_sbus − An externally generated clock is accepted at the 26−
pin SYNC/GATE connector.
Rev. 2.4

Page A−8 Navigator BSP User’s Guide
A.2 List of Command−Line Arguments (continued)

-brdfreq Board clock frequency rate in floating point representation. In
Navigator BSP example programs, it is used as the frequency of the
externally supplied clock signal or the clock generated by the on−
board oscillator.

-brdmode Board operation mode. You can use one of the following options:

• alone − Stand−alone mode.

• slv − Slave mode. The target board accepts CLK, GATE/TRIG,
or SYNC/PPS from another board.

• mstr − Master mode. The target board provides CLK, GATE/
TRIG, or SYNC/PPS to another board.

-brdoption A 64−bit optional value used for selecting a special feature of some
boards during board setup.

-caddr Client host IP address

-chanmask Channel mask for single or multichannel operation in hex repre−
sentation with or without the 0x prefix. It supports up to 32 chan−
nels.

1 − For channel 1

2 − For channel 2

4 − For channel 3

8 − For channel 4

10 − For channel 5

20 − For channel 6

40 − For channel 7

80 − For channel 8

FF − For all 8 channels (1 to 8)

FFFFFFFF − For all 32 channels (1 to 32)

-clkoption A 64−bit optional value used for selecting a special feature of some
boards during clock setup.

-cport Client port number
Rev. 2.4

Navigator BSP User’s Guide Page A−9
A.2 List of Command−Line Arguments (continued)

-dacdatamode DAC data mode. You can use one of the following options:

• timepk8 − 8−bit real, time packed
(4 consecutive samples stored in a single 32−bit word)

• timepk − 16−bit real, time packed
(2 consecutive samples stored in a single 32−bit word)

• chanpk − 16−bit real, channel packed
(2 channel−interleaved samples stored in a single 32−bit word)

• iqpk − 16−bit I/Q packed
(I and Q samples stored together in a single 32−bit word)

-dacdatasrc DAC data source. You can use one of the following options:

• dma − Data comes from its own specified DMA channel

• ram − Data comes from on−board DDR RAM

• sine − Digital data comes from test SINE signal

• ramp − Digital data comes from test RAMP signal

-dacfreq DAC clock frequency rate, in floating point format. This value
should be a factor of brdfreq. Valid dividers are 1, 2, 3, 4, 6, 8 and
16.

-dacgatedly DAC gate tap delay

-dacgatepol The polarity for DAC GATE/TRIG signals. You can use one of the
following options:

• normal − As received, or Rising edge

• invert − Inverted from received, or Falling edge

-dacgatesrc The source for DAC GATE/TRIG signals. You can use one of the
following options:

• off − No signal is provided. A gate/trigger signal is not
generated. Therefore, no DAC output is expected.

• reg − Internal registers are used to generate signals.

• ttl − Front panel TRIG input (SSMC connector, TTL voltage
level)

• sbusttl − Front panel SYNC/GATE input (26−pin sync bus
connector, TTL voltage level)

• sbusdif − Front panel SYNC/GATE input (26−pin sync bus
connector, LVPECL voltage level)
Rev. 2.4

Page A−10 Navigator BSP User’s Guide
A.2 List of Command−Line Arguments (continued)

-dacgtrigmode DAC gate, trigger, or trigger hold selection. You can use one of the
following options:

• gate − Global gate for all channels

• lgate − Local gate for each channel

• trig − Trigger

• trighold − Trigger hold mode

• timestamp − Timestamp mode

-dacoption A 64−bit optional value used for selecting a special feature of some
boards during DAC setup.

-dacoutdly DAC output tap delay

-dacppspol DAC PPS polarity. You can use one of the following options:

• normal − As received, or Rising edge

• invert − Inverted from received, or Falling edge

-dacppssrc The source for DAC PPS signals. You can use one of the following
options:

• off − No signal is provided.

• reg − Internal registers are used to generate signals.

• syncsbusttl − TTL SYNC signal from SBUS connector

• gatesrc − Received GATE signal

• syncsbusdif − Diff SYNC signal from front panel 26−pin SBUS
connector

• gatesbusttl − TTL GATE signal from front panel 26−pin SBUS
connector

• gatessmcttl − TTL GATE signal from front panel SSMC
connector

-dacsyncdly DAC sync tap delay

-dacsyncpol The polarity for DAC SYNC signals. You can use one of the
following options:

• normal − As received, or Rising edge

• invert − Inverted from received, or Falling edge
Rev. 2.4

Navigator BSP User’s Guide Page A−11
A.2 List of Command−Line Arguments (continued)

-dacsyncsrc The source for DAC SYNC signals. You can use one of the
following options:

• off − No signal is provided. A sync signal is not generated.
Therefore, no DAC output is expected.

• reg − Internal registers are used to generate signals.

• ttl − Front panel TRIG input (SSMC connector, TTL voltage
level)

• sbusttl − Front panel SYNC/GATE input (26−pin sync bus
connector, TTL voltage level)

• sbusdif − Front panel SYNC/GATE input (26−pin sync bus
connector, LVPECL voltage level)

• gatesrc − Received GATE signal

-ddc DDC enabled. You can use one of the following options:

• yes − DDC enabled

• no − DDC disabled

-ddcgain DDC gain in integer value.

-ddcinvert DDC spectrum inversion enabled. You can use one of the following
options:

• yes − Enable inversion.

• no − Disable inversion.

-ddcoption A 64−bit optional value used for selecting a special feature of some
boards during DDC setup.

-ddcphase DDC phase in degrees.

-decim DDC decimation. This argument accepts the option in the form of
<chan>:decimation where chan is the channel number to which the
decimation applies and the decimation is the value that follows the
colon (:). Note that <chan> ranges from 1 to 20.

-dmaoption A 64−bit optional value used for selecting a special feature of some
boards during Direct Memory Access (DMA) setup.

-duc DUC enabled. You can use one of the following options:

• yes − DUC enabled

• no − DUC disabled
Rev. 2.4

Page A−12 Navigator BSP User’s Guide
A.2 List of Command−Line Arguments (continued)

-ducgain DUC (digital upconverter) gain (integer).

-ducinvert DUC spectrum inversion enabled. You can use one of the following
options:

• yes − Enable inversion.

• no − Disable inversion.

-ducoption A 64−bit optional value used for selecting a special feature of some
boards during DUC setup.

-ducphase DUC phase in degrees.

-gateoption A 64−bit optional value used for selecting a special feature of some
boards during gate setup.

-ini User−specified .ini file with absolute path. This argument is only
supported as a command prompt argument. It cannot be used in an
ini file. For more information about ini files, see Section A.1.

-interp Interpolation (integer value). This argument accepts the option in
the form of <chan>:interpolation where chan is the channel number
to which the interpolation applies and the interpolation is the value
that follows the colon (:). Note that <chan> ranges from 1 to 20.

-loop Number of loops in decimal format. In Navigator BSP example
programs, a special value of 0 implies that the program should run
forever until it is manually stopped with a key hit.

-model Module ID, in hex representation (for example: 0x71131, 0x71821,
0x71841, 0x71861, etc.). In the Navigator BSP example programs, it
is used to find specific models of Pentek boards present in the
system. Supplying a 0 for -model will make the BSP search for all
Pentek Jade boards. In the case when multiple boards are detected,
use -brd <n> for the desired board.

-ncofreq NCO (numerically controlled oscillator) frequency, in floating point
representation. This argument accepts the option in the form of
<chan>:NCO freq where chan is the channel number to which the
NCO frequency applies and the NCO frequency is the value that
follows the colon (:). Note that <chan> ranges from 1 to 32.
Rev. 2.4

Navigator BSP User’s Guide Page A−13
A.2 List of Command−Line Arguments (continued)

-numbuf Number of buffers. In the Navigator BSP example programs, it is
used as the number of DMA buffers of xfersize each. It employs
the numbuf buffers to create a circular buffer for more efficient
operation.

-progoption A 64−bit optional value used for selecting a special feature for run−
ning programs.

-rdatafmt Data file format to be read from file. Choose binary (bin) or ascii
(asci). In the Navigator BSP example programs, it is used in the
following way:

• bin (binary) − The file contains samples in raw binary format
and has a .dat extension.

• asci (ascii) − The file contains the samples as signed integer
values on separate lines and has a .txt extension.

-reffreq This is an optional reference clock frequency in floating point rep−
resentation. It is supplied at the CLK connector to help improve the
accuracy of the internally generated board clock. This argument is
ignored when an external clock is provided. Consult the Pentek
board’s hardware manual for a valid range of values. The value
must be non−zero.

-rfile File name of data to be read from. In the Navigator BSP example
programs, if this is not provided, a default name will be generated
by the program.

-rsize Data size to be read from the file.

-saddr Server host IP address

-sport Server port number

-syncoption A 64−bit optional value used for selecting a special feature of some
boards during sync setup.

-tstart Time Start for the timestamp. This argument should provide a cal−
endar date in the following format: YYYY:MM:DD,HH:MM:SS (24−hour
time). For example, 2018:12:31,11:00:01.

NOTE: This value must be in the future. In the Navigator BSP
example programs, it is normally used for timestamp−
based triggering.
Rev. 2.4

Page A−14 Navigator BSP User’s Guide
A.2 List of Command−Line Arguments (continued)

-tstop Time Stop for the timestamp. This argument should provide a cal−
endar date in the following format: YYYY:MM:DD,HH:MM:SS (24−hour
time). For example, 2018:12:31,11:59:59.

NOTE: This value must be in the future and later than the
value specified by tstart. In the Navigator BSP
example programs, it is normally used for timestamp−
based triggering.

-tunefreq Tuning Frequency in floating point representation. This argument
accepts the option in the form of <chan>:Tuning freq where chan is
the channel number to which the tuning frequency applies and
Tuning freq is the tuning frequency value that follows the colon (:).
Note that <chan> ranges from 1 to 32.

-vchanmask Hex representation of the channel mask for channels to be
displayed with the Signal Viewer. It supports up to 32 channels.

• 1 for channel 1

• 2 for channel 2

• 4 for channel 3

• 8 for channel 4

• 10 for channel 5

• 20 for channel 6

• 40 for channel 7

• 80 for channel 8

• FF for all 8 channels

-vhost Host mode for the computing device where data stream is serving
to the Signal Viewer. Choose one of the following:

• lcl (local mode) − The BSP library is set to automatically
launch the Signal Viewer on the local machine.

• rmt (remote mode) − Manual launch of the Signal Viewer is
required on the remote machine.

NOTE: In the Navigator BSP example program, this argument
is ignored if vport is set to 0.
Rev. 2.4

Navigator BSP User’s Guide Page A−15
A.2 List of Command−Line Arguments (continued)

-vport Signal Viewer port number in integer representation. Valid port
numbers range from 1 to 65534. However, to avoid posting conflicts
with other systems in the IP network, users should use port num−
bers from 50000 to 65534. You can use one of the following options:

0 − Signal Viewer is not activated.

<port number> − Use port numbers ranging from 50000 to 65534.

-vsubchan Sub−channel to display using the Signal Viewer. This parameter is
used for the narrowband DDC and it accepts the option in the form
of

<chan>:vsubchan

where chan is the channel number on which the sub−channel
following the ':' is applied.

NOTE: <chan> and <vsubchan> range from 1 to 32

-wdatafmt Data file format to be written to a file. Choose binary (bin) or ascii
(asci). In the Navigator BSP example programs, it is used in the
following way:

• bin (binary) − The file shall contain samples in raw binary
format and will have a .dat extension.

• asci (ascii) − The file shall contain the samples as ascii
formatted signed integer values on separate lines, and the file
name will have a .txt extension.

-wfile File name of data to be written with captured data. In the Navigator
BSP example programs, if this is not provided, default name(s) will
be generated by the program.

-wsize Data size to be written to a file. This value must not exceed the size
specified in -xfersize. A zero value for this argument indicates no
data is to be saved to a file.

-xfersize Transfer size in number of bytes. In the Navigator BSP example
programs, it is used as transfer size in bytes (individual buffer size).
One or more buffers of xfersize each are employed by the example
programs to perform DMA operations.
Rev. 2.4

Page A−16 Navigator BSP User’s Guide
A.3 Using Command−Line Arguments

Following are examples of how to use command−line arguments:

acquire Run the acquire program using its defaults.

acquire -? List the command line options for the acquire example.

acquire -h List the command line options for the acquire example.

acquire -loop 0 -vport 50000 -vhost lcl

Run the acquire example forever, with the Signal Viewer enabled.
Local host mode is selected so the Viewer will be launched
automatically on the local host machine. IP port number set to 50000.
The rest of arguments supported by the example remain at their
default option settings.

acquire -chanmask 1 -xfersize 32768 -loop 100000

Run the acquire example with the following options:

 channel number = 1
 transfer size = 32768 bytes
 loop count = 100000
Rev. 2.4

Navigator BSP User’s Guide Page B−1
Appendix B: Navigator Signal Viewer

B.1 Introduction

The Navigator Signal Viewer allows you to monitor live input signals in both time and
frequency domains. It provides signal analysis tools, including amplitude and fre−
quency calculators, distortion calculators, averaging modes, zooming and panning
controls, and cursors for exploring spectral components.

Signals displayed are “snapshot” blocks of data, processed by the Signal Viewer at its
maximum rate. If the data rate into the Signal Viewer is faster than the Signal Viewer
can process input samples, then input data is discarded until the Signal Viewer can
accept another new block of samples. If the data rate into the Signal Viewer is slower
than the Signal Viewer processing speed, then the Signal Viewer will wait for a com−
plete block of samples before updating the Oscilloscope and Spectrum Analyzer dis−
plays, and no input data is discarded.

The Signal Viewer utility is built as a client−server application, which works with the
Navigator example programs to display the data being sent via TCP/IP sockets. The
Signal Viewer includes signal viewing and analysis tools with a virtual oscilloscope
and a virtual spectrum analyzer. These tools allow you to monitor the live data coming
out of the ADC or the DDC of the Jade series modules.

B.2 Description of the Signal Viewer Software

There are two parts to the Signal Viewer utility: the Viewer Client and Viewer Server.

B.2.1 The Viewer Client

This application is installed when the Navigator BSP is installed. It is pro−
vided as an executable under the directory of <NAVBSP>\bin, where <NAVBSP> is
the base directory of the Navigator BSP. The Viewer Client is served to receive
data from the Viewer Server via a TCP/IP data streaming socket connection.
The data is then calculated, scaled, and displayed on the Signal Viewer win−
dow (Figure B−1), which opens when the Signal Viewer is launched.

The Client application depends on the Server to send it a View−Control word
(a data structure which includes information about the data that the Server is
about to send).

After the client receives the control word data information, it displays some of
this information, such as the board model, channel, clock, center frequency
(DDC only), etc. in the Signal Viewer window (Figure B−1). It also uses some
of the data it receives from the Server to calculate the input frequency, ampli−
tude, harmonics, etc. of the signal, and scale the signal on the time−domain
and frequency−domain graphs.
Rev. 2.3

Page B−2 Navigator BSP User’s Guide
B.2 Description of the Signal Viewer Software (continued)

B.2.1 The Viewer Client (continued)

For Windows and Linux platforms, this application is started automatically
after the Server has initiated the TCP/IP data Streaming socket connections.
This is all done inside the utility API.

B.2.2 The Viewer Server

The Viewer Server is served to initiate the TCP/IP data streaming socket con−
nections to the Client application (the Signal Viewer program). Once the
socket connections are established, it can send ADC or DDC data to the client
for display via the socket connection. Each data buffer it sends to the Client
must be accompanied by a View−Controlling data structure word, which
should be sent before the data buffer.

The Viewer Server is included as part of the API utility. It consists of various
functions, but mainly three high−level routines that can be called inside the
user's data acquisition application. The routines can be invoked repeatedly for
multiple channels of data acquisition. These functions are written in portable
C source code and can be adapted under various platforms. The appropriate
platform−specific socket library is linked with the server application under
the individual platform in the Navigator example programs.

The three high−level routines, in the order of practical usage, are as follows:

NAVview_OpenViewer()

• Opens and configures all necessary TCP/IP sockets.

• Initializes and sets up basic Navigator parameters in the Viewer Control
word, as required by the Viewer Client for proper display.

• Validates the Viewer Control word.

• Launches Signal Viewer Client application.

• Establishes socket connections between the Server and the Client.

NAVview_SendData()

• Sets up the remaining parameters of the Viewer Control word for the most
up−to−date graphing criteria, such as sampling frequency, packing mode,
block size, decimation (DDC only), center frequency (DDC only), etc.

• Sends display control word to the Viewer Client.

• Sends specified data block size to Viewer Client.
Rev. 2.3

Navigator BSP User’s Guide Page B−3
B.2 Description of the Signal Viewer Software (continued)

B.2.2 The Viewer Server (continued)

NAVview_CloseViewer()

• Terminates the Viewer client.

• Closes all socket connections.

B.3 Sample Programming Scenario

The following is a sample programming scenario:

int *dataBuf;
void *boardHandle;

/* Start Viewer using port number 6000 */
NAVview_OpenViewer(boardHandle,
 NAV_CHAN_1,
 "localhost",
 6000);

/* Do 5000 loops */
count = 5000;
while(count--)
{

 /* Acquire data here ...*/

 /* Send data to Viewer */
 NAVview_SendData(boardHandle,
 NAV_CHAN_1,
 NAV_CHAN_1,

 dataBuf,
 NAV_VIEW_BLK_SIZE_DEFAULT);

}

/* Close all socket connections */
NAVview_CloseViewer(boardHandle, NAV_CHAN_1);

NOTE: boardHandle is a handle of the board when the application opens a board using
the NAV_BoardOpen() routine. See the demo example program for detail.
Rev. 2.3

Page B−4 Navigator BSP User’s Guide
B.4 Signal Viewer Operation

The Signal Viewer application is installed during the Navigator installation. However,
by default Signal Viewer operation is disabled because, in order to run it, you must install
the LabVIEW runtime engine as described in Section B.4.

The Signal Viewer must not be started until the View Server initiates the TCP/IP data
streaming socket connection in the Navigator program, as described in Section B.3. The
View Client is launched as described in Section B.4.

After it is started, the Signal Viewer displays two windows: the Oscilloscope window
on the left and the Spectrum Analyzer window on the right as shown in Figure B−1.

Figure B−1: Signal Viewer (Default Display)

At the bottom of the Oscilloscope window is a Samples switch that allows you to
select between samples and time (Figure B−2).
Rev. 2.3

Navigator BSP User’s Guide Page B−5
B.4 Signal Viewer Operation (continued)

Figure B−2: Samples/Time Switch

Click on the switch to change its position/setting. When the switch is set to Samples,
the X−axis is scaled to show the signal in terms of the number of samples. When
switched to Time, the X−axis is scaled to show the signal in terms of time in seconds.

At the top of the Oscilloscope window is a Display Type switch (Figure B−3). The
Display Type switch allows you to toggle the left−side Signal Viewer window between
the Oscilloscope display and the Spectrogram display. Click on the switch to change
its position/setting.

Figure B−3: Display Type Switch

Figure B−1 shows the Signal Viewer with the Oscilloscope display in the left window
and Figure B−4 shows the Signal Viewer with the Spectrogram display in the left
window.
Rev. 2.3

Page B−6 Navigator BSP User’s Guide
B.4 Signal Viewer Operation (continued)

When the Display Type switch is set to show Spectrogram, the left window displays a
horizontal waterfall of the signal that is shown in the right window. See Figure B−4.
The color corresponds to the intensity of the signal.

Figure B−4: Signal Viewer with Spectrogram Display in Left Window

Regardless of what is displayed in the Signal Viewer’s left window, the Signal Viewer’s
right window always shows the Spectrum Analyzer display. On the left side of the
Spectrum Analyzer window is an Amplitude switch (Figure B−5) that allows you to
toggle the amplitude scaling between dBm and dBfs. Click on the switch to change its
position/setting.

Figure B−5: Amplitude Switch (Spectrum Analyzer Display)
Rev. 2.3

Navigator BSP User’s Guide Page B−7
B.4 Signal Viewer Operation (continued)

B.4.1 Resume, Pause and Close

When started, the Signal Viewer begins displaying live data. Clicking on the
Pause button in the lower left stops the live display and clicking Resume
restarts it. The Signal Viewer is closed by clicking the Close button.

Figure B−6: Resume, Pause and Close Buttons

B.4.2 Channel, Server, and Board Model

The Channel, Server, and Board Model are displayed at the bottom part of
the Signal Viewer window (Figure B−7). These provide information about
the source of the signal you are viewing. Board Model is the model number
of the Pentek Jade board being used.

Figure B−7: Channel, Server, and Board Model
Rev. 2.3

Page B−8 Navigator BSP User’s Guide
B.4 Signal Viewer Operation (continued)

B.4.3 Amplitude Calculator

The Amplitude calculator window in the lower left of the Signal Viewer
displays the calculated amplitude of the input signal in dBm, VRMS, and
V(p−p).

Figure B−8: Amplitude Calculator

dBm dBm = 20 log (VRMS) − 20 log (0.2236)

where 0.2236 = the RMS Voltage of l mWRMS into 50 Ω

VRMS VRMS calculates the root mean square of the input signal.

V(p−p) V(p−p) measures the difference from the most positive peak to
the most negative peak.

NOTE: The Overload LED corresponds to the Overload LED on the
Pentek board.

B.4.4 Signal Characteristics

The characteristics of the signal being viewed are summarized in the area to
the right of the Time Display Controls and shown in Figure B−9 below. The
displayed Channel Type, Data Packing, Sample Clock, Decimation, and
Bandwidth values are derived from the Pentek Jade module’s configuration
settings and the selected signal source.

Figure B−9: Signal Characteristics
Rev. 2.3

Navigator BSP User’s Guide Page B−9
B.4 Signal Viewer Operation (continued)

B.4.5 Distortion Calculator

The distortion calculator window located to the right of the Amplitude Cal−
culator displays the results of signal analysis algorithms.

Figure B−10: Distortion Calculator

• 2nd Harmonic − Displays the level of the second harmonic component in
dB relative to the fundamental signal level.

• 3rd Harmonic − Displays the level of the third harmonic component in dB
relative to the fundamental signal level.

• SINAD − Displays the measured signal noise and distortion (SINAD).
SINAD is defined as the dB ratio of the RMS energy of all signals to the
RMS energy of all signals minus the energy of the fundamental.

• THD − Displays the measured total harmonic distortion up to and
including the highest harmonic component. THD is defined as the ratio of
the RMS sum of the harmonic components to the amplitude of the
fundamental signal. To compute THD as a percentage, multiply the
displayed value by 100.

• Detected Frequency −Displays the calculated value based on a software
frequency detector algorithm. This calculated value will not be accurate
for certain signals with low levels or excessive noise.
Rev. 2.3

Page B−10 Navigator BSP User’s Guide
B.4 Signal Viewer Operation (continued)

B.4.6 Tuning Frequency, FFT Size, and Resolution Bandwidth

This section of the Signal Viewer allows you to adjust the Tuning Frequency
and FFT Size. The Tuning Frequency is adjusted using up and down
buttons. By clicking on the FFT Size input field you can choose from several
values. The resolution bandwidth calculator (Res BW) displays the
resolution bandwidth based on the frequency bandwidth and FFT size.

Figure B−11: Tuning Frequency, FFT Size, and Res BW

B.4.7 Spectrum Averaging

The Averaging control on the bottom right side of the screen provides
exponential averaging of the frequency spectrum display. The number of
averages is set with up and down buttons, or with direct numeric entry.

For an averaging value of N, exponential averaging sums the latest N values
for each frequency display point (FFT point) and divides each value by N.
The larger the value of N, the more averaging occurs.

If the Peak Hold button is pressed, the right−hand window will display the
peak amplitudes across all the bandwidths.

Figure B−12: Averaging Control
Rev. 2.3

Navigator BSP User’s Guide Page B−11
B.4 Signal Viewer Operation (continued)

B.4.8 Display Zooming

The Time Display Controls and FFT Display Controls both include Zoom
buttons (center button) to provide tools for zooming in both the Oscillo−
scope and Spectrum Analyzer display windows.

Figure B−13: Time and FFT (Frequency) Display Controls

 Click on the magnifying glass Zoom button to invoke the zoom func−
tion for either the Oscilloscope or Spectrum Analyzer display window. The
Zoom menu screen appears as shown in Figure B−14 below.

Click on any one of the six buttons in the menu to invoke the desired zoom
functions described in the following paragraphs.

Zooming will change the horizontal or vertical scale, or both.

B.4.8.1 Horizontal Zoom

To zoom in the horizontal axis only, click the Horizontal Zoom
button. Then place the magnifying glass cursor in the display
window at the starting position for horizontal zoom, hold the left
mouse button down, drag the cursor to the ending position for the
horizontal zoom, and then release the mouse button.

Figure B−14: Time and FFT (Frequency) Zoom Controls
Rev. 2.3

Page B−12 Navigator BSP User’s Guide
B.4 Signal Viewer Operation (continued)

B.4.8 Display Zooming (continued)

B.4.8.2 Vertical Zoom

To zoom in the vertical axis only, click the Vertical Zoom button.
Then place the magnifying glass cursor in the display window at
the starting position for vertical zoom, hold the left mouse button
down, drag the cursor to the ending position for the vertical zoom,
and then release the mouse button.

B.4.8.3 Windowed Zoom

To zoom within a rectangular window, click the Windowed Zoom
button. Then place the magnifying glass cursor in the display win−
dow in one corner of the desired zoom rectangle, hold the left
mouse button down, drag the cursor to the opposite corner of the
desired zoom rectangle, and then release the mouse button.

B.4.8.4 Full Screen

To restore the full screen from a zoomed region, click the Full
Screen button Reset Scale at the lower left of the Spectrum Ana−
lyzer display window.

NOTE: The Full Screen function may not work properly for
DDC displays, so use the Reset Scale button.

B.4.8.5 Point Zoom

To zoom from a single point in the display, click the Point Zoom
button. Then place the quad outward−arrow cursor in the display
window at the desired zoom position and click the left mouse but−
ton. Click again for additional zooming.

B.4.8.6 Point Shrink

To shrink (unzoom) from a single point in the display, click the
Point Shrink button. Then place the quad inward−arrow cursor in
the display window at the desired shrink position and click the left
mouse button. Click again for additional shrinking.
Rev. 2.3

Navigator BSP User’s Guide Page B−13
B.4 Signal Viewer Operation (continued)

B.4.9 Display Panning

The Time Display Controls and FFT Display Controls shown in Figure B−
13 both include Pan buttons (right button) to provide panning of both dis−
play windows.

 Click on the Pan (hand) button to invoke the panning function for
either the Oscilloscope or Spectrum Analyzer display window.

Then place the hand cursor in the display, hold down the left mouse button
and move the display up, down, left or right. Release the mouse button
when you are finished.

The panning operation will not change the vertical or horizontal scale.

The display can be restored by clicking the Reset Scale button.

B.4.10 Reset Scale − Oscilloscope and Spectrum Analyzer Displays

After panning and zooming in the Oscilloscope and Spectrum Analyzer dis−
plays, you can quickly restore the initial default scaling, zoom and panning
by clicking the Reset Scale buttons at the lower left corner of each display.

Figure B−15: Reset Scale Button

B.4.11 Cursor Operation

The buttons beneath the cursor legend (Figure B−16) can be used to control
the position of the cursors. You can move the cursors vertically and horizon−
tally by using the appropriate buttons. Moving the cursors by dragging them
on the graph is also possible but the buttons provide fine−grained control and
are helpful in snapping the cursors to points of interest (e.g., peaks).

Figure B−16: Cursor Position Adjustment Buttons

NOTE: Vertical movement is not available for multi−plot cursors because
they do not track the X axis (i.e., amplitude).
Rev. 2.3

Page B−14 Navigator BSP User’s Guide
B.4 Signal Viewer Operation (continued)

B.4.11 Cursor Operation (continued)

The FFT Display Controls shown in Figure B−13 includes the Cursor button
(left button) which provides multiple cursors for exploring and identifying
features in the Spectrum Analyzer display window.

NOTE: There is no cursor support for the Oscilloscope display window.

 Click on the Cursor (crosshairs) button to invoke the Cursor function,
to ensure that both Zoom and Pan functions are disabled.

Then right−click the mouse in the Cursors window at the lower left of the
screen to bring up the Create Cursor menu as shown in Figure B−17.

Two types of cursors are available: Free and Single−Plot. Free cursors can
be moved freely anywhere on the screen in horizontal and vertical direc−
tions. Single−Plot cursors can be moved anywhere on the screen in the hor−
izontal dimension, but the vertical position tracks the vertical value of the
display plot.

By clicking on the Free cursor menu selection, a new entry is added to the
cursor window as shown below in Figure B−18.

Figure B−18: New Free Cursor 0

Figure B−17: Create Cursor Menu
Rev. 2.3

Navigator BSP User’s Guide Page B−15
B.4 Signal Viewer Operation (continued)

B.4.11 Cursor Operation (continued)

Cursor 0 is a Free cursor that starts out with a vertical line at 0 Hz (at the left
side of the Spectrum Analyzer display) and a horizontal line at 0 dB (at the
top of the Spectrum Analyzer display). Notice that the frequency and
amplitude values of the cursor are displayed in the cursor window.

By right clicking on Cursor 0, its properties can be displayed along with
specific settings for that cursor as shown in Figure B−19.

For example, by clicking on Bring to Center, Cursor 0 is centered horizon−
tally and vertically on the display, and the values in the cursor window are
updated accordingly.

Because Cursor 0 is a free cursor, the frequency value can be changed by
moving the vertical line with the mouse or entering a new frequency value
in the cursor window, and the amplitude value can be changed by moving
the horizontal line with the mouse or entering a new amplitude value in the
cursor window.

Both horizontal and vertical values of a free cursor can be moved by moving
the intersection crosshairs of the horizontal and vertical cursor lines with the
mouse.

NOTE: Be sure the Cursor button in the FFT Display Controls window is
selected (highlighted in dark gray) in order to move the cursor.

Figure B−19: Cursor 0 Properties
Rev. 2.3

Page B−16 Navigator BSP User’s Guide
B.4 Signal Viewer Operation (continued)

B.4.11 Cursor Operation (continued)

By clicking on the Attributes property, many different features of the cursor
can be customized, such as the color of the cursor lines, as shown below.

By right clicking on Create Cursor and then Single−Plot, a new Single−Plot
cursor is created as Cursor 1, as shown below.

Figure B−21: Cursor Window with Single Free Cursor and Single−Plot Cursor

Because Cursor 1 is a Single−Plot cursor, its frequency value can be
changed by moving the vertical line with the mouse or by entering a new
frequency value in the cursor window, but the amplitude value will track
the amplitude of Plot 0 and is not user adjustable.

This feature can be useful for reading the amplitude of frequency compo−
nents. In some cases, the peak value of a plot may be discovered by zooming
the plot in the frequency scale to improve the horizontal resolution.

Figure B−20: Cursor 0 Attributes
Rev. 2.3

Navigator BSP User’s Guide Page C−1
Appendix C: DMA Callbacks

C.1 Background and Usage

Direct Memory Access (DMA) is a capability provided by PCI bus architecture which
allows direct data transfer between a connected device, such as a Pentek board, and the
memory on the host computer, freeing the CPU from involvement with the data trans−
fer and thus improving the host's performance. This is one of the most commonly
employed features in Navigator−based user applications.

To ease the task of managing DMA operations across several channels in either direc−
tion, a framework is built within the BSP that provides asynchronous callbacks to a
user−supplied handler function. When DMA engine is being set up for a channel and a
non−null callback function pointer is provided, the library creates a dedicated DMA
thread for that channel. The library also attaches its own interrupt handler for inter−
rupts generated by the DMA hardware in the device. The DMA thread and interrupt
handler work in conjunction to provide easy access to DMA buffers in user application
and monitor breakdown in real−time performance.

The end result is that the users don't need to worry about maintaining concurrent
threads or handling hardware interrupts. User code can concentrate on managing the
data coming out of or going into the hardware. The Navigator BSP will take care of the
tedious tasks in the background. This mechanism is similar to the event−driven pro−
gramming paradigm of GUI applications. It is also analogous to signal handlers in C
and even to interrupt handlers. To look at a typical usage scenario of this mechanism
and corresponding API functions, please refer to Sections 7.5 (Set Up Board Resources)
and 7.8 (Manage Data Transfer).

The callback mechanism is built around the PCIe DMA core's linked list descriptors in
the FPGA. When DMA operation is being set up on a channel, the user provides the
information required to create a ring buffer of sufficient size in the host RAM. Individ−
ual links of the DMA descriptor list are programmed to form equal−sized segments of
this ring buffer. The last segment points to the first segment, forming a ring. The size of
each segment and the number of such segments is specified by the user during setup.

The library enables an interrupt for each segment such that a hardware interrupt is
generated whenever the DMA core has finished writing to a buffer segment (A/D
application) or reading from a buffer segment (D/A application). The DMA core may
also fill buffer segments partially in case the acquisition gate goes down before the seg−
ment is totally full. For this reason, we recommend that you enable metadata genera−
tion while setting up the DMA and use that metadata to obtain the number of valid
bytes in each buffer segment.
Rev. 2.3

Page C−2 Navigator BSP User’s Guide
C.1 Background and Usage (continued)

Under normal circumstances, a DMA interrupt is received when ADC data is available
in a buffer. The library's DMA thread calls the user−supplied callback function with
appropriate arguments so that the user application can make use of the available data.
This frees up the application from the burden of creating concurrent threads and syn−
chronizing them. The user's callback function is executed in a separate thread for each
channel in use.

User code should still take precautions to synchronize accesses to shared resources
from within the DMA callback handler. All hardware interrupts (including those from
DMA core) can be used alongside the callback function in the user application. If the
application has explicitly enabled DMA core interrupts along with the callback mecha−
nism, the user's DMA interrupt handler will be invoked first and then a DMA callback
will be provided as needed.

This callback mechanism also keeps track of undesirable conditions which degrade or
break down real−time performance, such as FPGA FIFO being capped or buffer over−
run/underrun. When such a condition is encountered, the data becomes unreliable and
the DMA thread communicates these conditions to the user application for further
action.

DMA callbacks can be set up in two operating modes:

• The first, and more commonly used mode is CONTINUOUS_LOOP. In this mode, the DMA
runs continuously and callbacks are provided until stopped explicitly. This mode
utilizes the ring buffer to provide continuous performance.

• The second mode is SINGLE_CHAIN. In this mode, the hardware pauses DMA automat−
ically after executing the last DMA descriptor link. This is useful when precise control
is required on the amount of data transfer. Only one set of data buffers is transferred
on each run. The application can still restart the DMA after the end of the chain, if
needed.

We will look at a few common use cases to understand how to set up the DMA callback
framework. These scenarios are primarily meant to demonstrate the capabilities and
usage of this framework. The solutions described in these scenarios are somewhat the−
oretical and a real−world application will have greater complexity. Nevertheless, the
same approaches can be used in more sophisticated applications.
Rev. 2.3

Navigator BSP User’s Guide Page C−3
C.2 Scenario 1: Signal Recorder

In this scenario, the requirement is to save all the signals received by an antenna.
Assume that the signal from the antenna is available at an input connector on a Jade
board's front panel. The application should continuously acquire and store data to disk.
The storage configuration on the system provides an effective throughput of 450 MB/s.
The ADC on a Jade 71861 board is configured to sample at 200 MSPS in 16−bit real data
format, resulting in a data rate of 400 MB/s. After running storage benchmarks, it was
found that, in the worst case, disk write throughput can briefly plummet to 100 MB/s
because of the varying system load.

As is evident from the numbers above, some kind of buffering is needed for reliable
signal acquisition. The DMA core can be configured to store ADC data in a ring buffer
composed of 'n' segments in host RAM, and as soon as a segment is filled, the applica−
tion will copy it to disk. The value of 'n' is determined by the worst−case disk perfor−
mance.

Let's fix the size of each buffer segment as 4 MB (4 million bytes), assuming that the
degraded write speeds of 100 MB/s last for 0.04 seconds or less. There should be
enough buffers such that the DMA does not wrap around and overwrite a buffer seg−
ment while it is being copied to disk. In the ideal case, with a write speed of 450 MB/s,
the buffer segments will be copied to disk in less time than it takes for the DMA core to
fill them with ADC data. Each buffer segment will get copied to disk slightly before the
next one is filled.

However, in the worst case, the disk write speed is a quarter of the incoming data rate.
By the time the current buffer segment is saved on the disk, the DMA core would have
completely filled the next four segments and moved onto the fifth one. If there are any
less than five buffer segments, the data stored on the disk would not be reliable. Also,
we need extra buffers to provide the quicker disk writes some time to catch up with the
DMA core. The number of such extra buffers can be found through basic arithmetic:

Thus, at least 45 buffer segments of 4 MB each are necessary to completely recover from
occasional degradation of performance on this system. If the disk write speed degrades
too often or if the maximum possible disk write speed is less than the incoming data
rate, continuous data acquisition will not be feasible.

If a segment in the ring buffer is about to be (or has already been) overwritten by the
DMA core before being processed by the application's DMA callback handler, the sta−
tus code will have its NAV_STAT_DMA_OVERRUN bit set.

(5 buffers * 4 MB) + 400 MB/s * T seconds = 450 MB/s * T seconds
T = 20/50 = 0.4 seconds; equivalent to 160 MB of data at 400 MB/s.
That 160 MB of data can be stored in 40 buffer segments of 4 MB each.
Rev. 2.3

Page C−4 Navigator BSP User’s Guide
C.2 Scenario 1: Signal Recorder (continued)

A performance bottleneck could also manifest in the hardware. If the host machine is
not able to maintain the required data rate when interacting with the PCIe device, the
device FIFOs will eventually be used up to capacity. For example, if the PCIe link is not
fast enough, the rate of getting data out of the device to host RAM will be slower than
the rate at which it is being generated/sampled. The device will then end up with a
totally full output FIFO. When this happens, the DMA status code will have its
NAV_STAT_DMA_FIFO_CAPPED bit set.

The API call to set up DMA in Navigator for this scenario will be as shown below:

/* DMA
 * Set DMA Channel 1 in Continuous mode, acquiring 4 MB of data per buffer
 * segment with 45 such buffers in use. */
status =
NAV_DmaSetup(boardHandle,
 NAV_CHANNEL_TYPE_ADC, /* ADC DMA*/
 NAV_CHAN_1, /* Channel being configured */
 45, /* Number of buffers */
 4.0e6, /* Buffer size */
 NAV_DMA_METADATA_ENABLE, /* FPGA will provide metadata */
 NAV_DMA_RUN_MODE_CONTINUOUS_LOOP, /* Operating mode */
 NAV_SYS_WAIT_STATE_MILSEC(15000), /* Timeout period */
 &dmaCallbackHandler, /* DMA callback handler */
 boardHandle, /* Data pointer for the handler */
 0); /* Options (none needed) */

/* Implementation of a DMA callback handler for this scenario.
 * When the hardware has filled up a DMA buffer, the user code
 * can start using that data from this function. */
void dmaCallbackHandler (int32_t channel, int32_t dmaStatus,
 void *dataBuffer, void *metaDataBuffer,
 void *userData)
{
 /* If DMA buffer segment has been filled without missing any samples,
 * and has not been overwritten, save it to disk. */
 if((dmaStatus & NAV_STAT_DMA_LINK_END) &&
 !(dmaStatus & NAV_STAT_DMA_OVERRUN) &&
 !(dmaStatus & NAV_STAT_DMA_FIFO_CAPPED))
 {
 /* Save buffer segment to disk */

 //...

 }
}

Rev. 2.3

Navigator BSP User’s Guide Page C−5
C.3 Scenario 2: Single Snapshot

In this scenario, the requirement is to save one second of a continuous signal from four
ADC channels for offline analysis. Assume that all signals are available at input con−
nectors on a Jade board's front panel. The application should store one second worth of
data from each channel onto the disk. The storage configuration is composed of com−
modity−grade solid state drives (SSDs) in RAID0 configuration providing an effective
throughput of 1200 MB/s with worst−case performance of 800 MB/s. All four ADCs on
a Jade 71861 board are configured to sample at 200 MSPS in 16−bit real data format,
resulting in a combined data rate of 1600 MB/s.

Buffering of DMA data is necessary to ensure that all of it is reliably saved to the disk.
With individual buffer segments of 4 MB (4 million bytes), 100 such buffers must be
acquired on each channel to have one second of signal. The application must try to
minimize its memory footprint as much as possible. Assuming a consistently worst−
case disk write speed, the minimum number of buffers on each channel can be calcu−
lated as follows:

Thus, at least 50 buffer segments of 4 MB each are needed. Since the disk write speed is
half the incoming data rate, by the time the 50th buffer segment is being saved on the
disk, the DMA core would have filled each of the 50 buffer segments twice (of which
only the first pass is saved on disk). To prevent the unsaved buffer segments from
being overwritten, it is necessary to stop the DMA when it has transferred exactly 100
buffer segments.

An interrupt handler must be used to stop the DMA in a timely manner. The DMA
link−end interrupt is enabled and associated with a handler routine that counts the
number of invocations for each channel separately and stops DMA on the 100th invo−
cation for each channel. To account for the delay between the interrupt coming in and
the DMA actually stopping, a few more buffers should be added.

The API calls to set up DMA in Navigator for this scenario will be as shown below:

N = BURST_LENGTH * (1 - (Fout/Fin))
N = 100 * (1- 800/1600) = 50
Rev. 2.3

Page C−6 Navigator BSP User’s Guide
C.3 Scenario 2: Single Snapshot (continued)

The above code example continues on the next page.

for(chan = NAV_CHAN_1; chan < NAV_CHAN_4; chan++)
{

/* DMA
 * Set DMA Channels in Continuous mode, acquiring 4 MB of data per buffer
 * segment with 55 such buffers in use. */
status =
NAV_DmaSetup(boardHandle,
 NAV_CHANNEL_TYPE_ADC, /* ADC DMA*/
 chan, /* Channel being configured */
 55, /* Number of buffers */
 4.0e6, /* Buffer size */
 NAV_DMA_METADATA_ENABLE, /* FPGA will provide metadata */
 NAV_DMA_RUN_MODE_CONTINUOUS_LOOP, /* Operating mode */
 NAV_SYS_WAIT_STATE_MILSEC(15000), /* Timeout period */
 &dmaCallbackHandler, /* DMA callback handler */
 boardHandle, /* Data pointer for the handler */
 0); /* Options (none needed) */

/* Enable the interrupt for counting buffer transfers.
 * Do this while setting up the board resources. */
status = NAV_InterruptEnable(boardHandle,
 NAV_INTR_DATA_ACQ_ADC_DMA, chan,
 NAV_IP_DMA_PPKT2PCIE_INTR_LINK_END_INT,
 &dmaLinkIntrHandler, NULL);
}

/* Interrupt handler for LinkEnd event.
 * This function will be executed by the driver in a separate thread,
 * when the hardware raises the interrupt associated with this handler.
 */
void dmaLinkIntrHandler(void *hDev,
 int32_t intSource,
 int32_t instance,
 uint32_t intFlag,
 int32_t numInterrupts,
 int32_t numLostInterrupts,
 void *pData)
{
 void *boardHandle = pData;

 if (intFlag & NAV_IP_DMA_PPKT2PCIE_INTR_LINK_END_INT)
Rev. 2.3

Navigator BSP User’s Guide Page C−7
C.3 Scenario 2: Single Snapshot (continued)

The code example below is continued from the previous page.

 {
 if (++loopCount[instance] == 100)
 {
 NAV_DmaStop(boardHandle,
 NAV_CHANNEL_TYPE_ADC, instance);
 }
 }
}

/* Implementation of a DMA callback handler for this scenario.
 * When the hardware has filled up a DMA buffer, the user code
 * can start using that data from this function.
 * To avoid code duplication, only one callback handler is used for all
channels
 * with separate state variables. If required, a different handler function
 * can be used for each channel.*/
void dmaCallbackHandler (int32_t channel, int32_t dmaStatus,
 void *dataBuffer, void *metaDataBuffer,
 void *userData)
{
 /* If DMA buffer segment has been filled, save it */
 if((dmaStatus & NAV_STAT_DMA_LINK_END) && !captureDone[channel])
 {
 /* Save buffer segment to disk */

 //...

 /* Increment the counter */
 ++counter[channel]

 /* Capture is complete if 100 segments have been saved to disk */
 if(counter[channel] == 100)
 captureDone[channel] = 1;
 }
}

Rev. 2.3

Page C−8 Navigator BSP User’s Guide
C.4 Scenario 3: Repeated Snapshots

Like the previous scenario, the requirement for this scenario is to save one second of a
continuous signal from four ADC channels for offline analysis. A different algorithm is
used to analyze data from each channel independently. After the analysis is done, it
must be re−run 10 times to average out the results. Assume that calibrated test signals
are available at input connectors on a Jade board's front panel.

The memory footprint of the application is not a constraint. Deviating from the
approach taken in the previous scenario, 100 buffer segments will be used per channel
such that all the required data is available in the memory. This will greatly simplify the
implementation as well. Bear in mind that there are limits on the maximum number of
PCIe DMA core linked list descriptors in the FPGA and the maximum buffer size that
can be successfully allocated by the operating system on the host machine.

Instead of relying on interrupt handlers, the DMA should be configured in
SINGLE_CHAIN mode. This way, the hardware itself will pause the DMA after transferring
100 buffers. The application can then act on the data without any concern for an over−
run condition. After an algorithm has analyzed all the data for a channel, the DMA for
that channel can be restarted. Each channel can proceed at its own pace since the DMA
restarts are channel−specific.

The API call to set up DMA in Navigator for this scenario will be as shown below:

The above code example continues on the next page.

for(chan = NAV_CHAN_1; chan <= NAV_CHAN_4; chan++)
{
/* DMA
 * Set DMA Channels in Single Chain mode, acquiring 4 MB of data per buffer
 * segment with 100 such buffers in use. */
status =
NAV_CHANNEL_TYPE_ADC, /* ADC DMA*/
 chan, /* Channel being configured */
 100, /* Number of buffers */
 4.0e6, /* Buffer size */
 NAV_DMA_METADATA_ENABLE, /* FPGA will provide metadata */
 NAV_DMA_RUN_MODE_SINGLE_CHAIN, /* Operating mode */
 NAV_SYS_WAIT_STATE_MILSEC(15000), /* Timeout period */
 &dmaCallbackHandler, /* DMA callback handler */
 boardHandle, /* Data pointer for the handler */
 0); /* Options (none needed) */

}

Rev. 2.3

Navigator BSP User’s Guide Page C−9
C.4 Scenario 3: Repeated Snapshots

The code example below is continued from the previous page.

/* Implementation of a DMA callback handler for this scenario.
 * When the hardware has filled up all DMA buffers, the user code
 * can start using that data from this function.
 * To avoid code duplication, only one callback handler is used for all channels
 * with separate state variables. If required, a different handler function
 * can be used for each channel. */
void dmaCallbackHandler (int32_t channel, int32_t dmaStatus,
 void *dataBuffer, void *metaDataBuffer,
 void *userData)
{
 /* If all DMA buffer segments have been filled, run the analysis */
 if(dmaStatus & NAV_STAT_DMA_CHAIN_END)
 {
 /* Run the analysis algorithm directly on the data in memory */

 //...

 /* Restart the chain */
 NAV_DmaAdvance(boardHandle, NAV_CHANNEL_TYPE_ADC, channel);
 }
}

Rev. 2.3

Page C−10 Navigator BSP User’s Guide
C.5 Scenario 4: RADAR Receiver

Applications like radar systems require complex chains of acquisition periods and
delays. Depending on the hardware capabilities, the acquisition gate can be generated
internally in response to a trigger or it can be supplied as an external signal to the
board. For more information on API calls for gate/trigger, refer to the documentation
in the nav_gatetrig.c file.

The requirement for this scenario is to acquire data according to a set scheme and ver−
ify that no deviation has taken place. The gate signal will be generated externally via
separate hardware.

The acquisition scheme is as follows:

1) Acquire 8192 16−bit real data samples on ADC channel 1.

2) Wait 10,000 clock cycles.

3) Acquire 16384 16−bit real data samples on ADC channel 1.

4) Wait 50,000 clock cycles.

5) Acquire 32768 16−bit real data samples on ADC channel 1.

6) Verify acquisition and wait for the next cycle.

Two features of the DMA core will be very useful here. First, the DMA core can be con−
figured to generate an interrupt for partially filled buffers if the acquisition gate goes
down. This mode is always enabled by the Navigator BSP while setting up DMA. If this
mode is not enabled, the DMA core will wait for the acquisition gate to go up again
such that it can fill the buffer and then generate an interrupt.

Second, the DMA core can optionally collect useful information about the ADC data
transferred during the last DMA and automatically DMA this information to the host
processor in a separate buffer. The user application can enable this feature by provid−
ing appropriate arguments while setting up DMA. When a callback is provided to the
user code, pointers for both data buffers and metadata buffers are available as argu−
ments in the callback handler. Each data buffer segment has an associated metadata
buffer.

Information included in the meta data packet such as the channel number and number
of bytes transferred as well as the timestamps can aid the user application in processing
received data. Of particular concern to us in this scenario are the two fields that hold
the number of valid bytes transferred and the sample clock count portion of the time−
stamp.

Based on the acquisition scheme, we see that the largest chunk of samples to acquire is
32768 16−bit samples, so we will use three DMA buffers of 65536 bytes each. The DMA
core will fill the buffers only when the acquisition is active and it will also stop the
transfer midway if the gate goes down. Since the waiting period between successive
cycles is arbitrary or unknown, we will not set the DMA to time out.
Rev. 2.3

Navigator BSP User’s Guide Page C−11
C.5 Scenario 4: RADAR Receiver (continued)

Apart from the snippet for DMA setup shown below, there would be some API calls
required for setting up the ADC and gate/trigger.

The API call to set up DMA in Navigator for this scenario will be as shown below:

/* DMA
 * Set DMA Channel 1 in Continuous mode, acquiring maximum 64 KiB of data
 * per buffer segment with 3 such buffers in use. */
status =
NAV_DmaSetup(boardHandle,
 NAV_CHANNEL_TYPE_ADC, /* ADC DMA*/
 NAV_CHAN_1, /* Channel being configured */
 3, /* Number of buffers */
 65536, /* Buffer size */
 NAV_DMA_METADATA_ENABLE, /* FPGA will provide metadata */
 NAV_DMA_RUN_MODE_CONTINUOUS_LOOP, /* Operating mode */
 NAV_SYS_WAIT_STATE_FOREVER, /* Timeout period */
 &dmaCallbackHandler, /* DMA callback handler */
 boardHandle, /* Data pointer for the handler */
 0); /* Options (none needed) */

/* Implementation of a DMA callback handler for this scenario.
 * When the hardware has filled up a DMA buffer, the user code
 * can start using that data from this function.
 * The metadata can be used to verify acquisition length and delay. */
void dmaCallbackHandler (int32_t channel, int32_t dmaStatus,
 void *dataBuffer, void *metaDataBuffer,
 void *userData)
{
 void *boardHandle = userData;
 NAV_DMA_ADC_META_DATA *metaData = (NAV_DMA_ADC_META_DATA *) metaDatabuffer;

 /* If DMA buffer segment has been filled, save it */
 if((dmaStatus & NAV_STAT_DMA_LINK_END) && !captureDone[channel])
 {
 /* Check the metadata
 * validBytes should cycle between 16384, 32768 and 65536
 * ClockCount between successive callbacks should equal the delays. */
 printf("MetaData ValidBytes %u\n", metaData->validBytes);
 printf("MetaData ClockCount %u\n", metaData->timestampClockCount);

 //...
 }
}

Rev. 2.3

Page C−12 Navigator BSP User’s Guide
C.6 Scenario 5: Custom Implementation

Using the DMA callback framework present in the Navigator BSP greatly simplifies
general application development but it introduces latency that may be undesirable in
certain use cases.

If the capabilities provided by the DMA callback framework are not sufficient, or if an
application requires a predictable interrupt response time, then it is best to bypass the
callback framework entirely by directly handling DMA interrupts and data buffers.
This requires that DMA threads as well as the universal interrupt handler used inside
the library are bypassed. This ends up being the more traditional approach, which may
be more familiar to some users but also requires greater effort in getting the task done.

The easiest way to achieve this is to call the NAV_DmaSetup() routine with the dmaCallback
argument as NULL and then override the interrupt handler by directly calling the
driver−level routine. When dmaCallback is set to NULL, DMA threads are not started
and thus no callbacks will be provided. However, inside this setup routine the library
automatically attaches its own interrupt handler, which must be overridden by directly
calling the driver−level routine NAV718X_intEnable(). Calling the library routine
NAV_InterruptEnable() is not enough because that routine just makes sure that the DMA
interrupts are forwarded from the library's universal interrupt handler to the user−
specified interrupt handler.

Note that with a NULL callback, even though the library will not create any threads,
the DMA descriptors will still be set up to form a ring buffer, as described in Section
C.1.

The API call to set up DMA in Navigator for this scenario will be as shown below. The
example continues on the next page.

/* DMA
 * Set DMA Channel 1 in Continuous mode, acquiring 4 MB of data per buffer
 * segment with 100 such buffers in use. */
status =
NAV_DmaSetup(boardHandle,
 NAV_CHANNEL_TYPE_ADC, /* ADC DMA*/
 NAV_CHAN_1, /* Channel being configured */
 100, /* Number of buffers */
 4.0e6, /* Buffer size */
 NAV_DMA_METADATA_ENABLE, /* FPGA will provide metadata */
 NAV_DMA_RUN_MODE_CONTINUOUS_LOOP, /* Operating mode */
 NAV_SYS_WAIT_STATE_MILSEC(15000), /* Timeout period */
 NULL, /* No DMA callback needed */
 NULL, /* No Data pointer */
 0); /* Options (none needed) */

/* If needed, use IP-core level routines to reconfigure the DMA Linked List
 * Descriptors. The implementation of NAV_DmaSetupDescriptorList() in the
 * nav_dma_common.c file can be used as a reference. */
Rev. 2.3

Navigator BSP User’s Guide Page C−13
C.6 Scenario 5: Custom Implementation (continued)

The code example below is continued from the previous page.

/* Override the interrupt handler for the DMA link-end event by calling a
 * driver-level routine. */
status = NAV718X_intEnable(((NAV_BOARD_RESRC *)boardHandle)->pciInfo.hDev,
 NAV_INTR_DATA_ACQ_ADC_DMA, NAV_CHAN_1,
 NAV_IP_DMA_PPKT2PCIE_INTR_LINK_END_INT,
 NULL, &dmaLinkIntrHandler);

/* Interrupt handler for LinkEnd event.
 * This function will be executed by the driver in a separate thread,
 * when the hardware raises the interrupt associated with this handler. */
void dmaLinkIntrHandler(void *hDev,
 int32_t intSource,
 int32_t instance,
 uint32_t intFlag,
 int32_t numInterrupts,
 int32_t numLostInterrupts,
 void *pData)
{
 void *boardHandle = pData;

 if (intFlag & NAV_IP_DMA_PPKT2PCIE_INTR_LINK_END_INT)
 {
 /* Take action when a buffer segment has been filled
 * (e.g. release a semaphore through NAVsys_SemaphorePost() function) */

 // ...
 }
}

Rev. 2.3

Page C−14 Navigator BSP User’s Guide
C.7 Advanced Implementation Details

This section sheds some light on how the DMA callback mechanism has been imple−
mented within the library. This information may prove useful while modifying the
library or while debugging a problem.

When the DMA callback framework is active, code is being executed in three threads:

• First, there is the main application thread.

• Second, there is an interrupt handler thread, created for each application by the
device driver, which services incoming interrupts in a queue. All the interrupt han−
dler routines for the application are synchronously invoked by this interrupt thread
in the driver. An interrupt handler specifically for DMA−related interrupts is present
in the BSP library. This handler is called NAV_DmaInterruptHandler().

• Finally, there is a channel−specific DMA thread, NAV_DmaThread(), created within the
Navigator BSP library. When the DMA thread is launched, it starts to wait for a
request for action from any other thread.

User applications and interrupt handlers can communicate with DMA threads using
message queues. Each DMA thread has its own message queue. A special routine,
named NAV_DmaDispatchThreadCommand(), is available in the library to send messages to a
particular DMA thread. The BSP library uses this routine to send messages to DMA
threads on behalf of the user application. Normally, there would be no need to invoke
this function from code outside the BSP.

At present, the communication with DMA threads is only one−way and utilizes the
POSIX.1 and Win32 API on Linux and Windows, respectively. However, DMA threads
do acknowledge the receipt of certain messages by releasing a semaphore. The mini−
mum recommended depth for these message queues is 2048 on Linux and 20000 on
Windows. Default queue depths set by the operating system are 10 on Linux and 10000
on Windows.

Queue depth can be changed under Linux by writing to:

/proc/sys/fs/mqueue/msg_max

This must be done every time the system reboots. The installer for Navigator BSP on
Linux provides an init script that attempts to do this during boot up. If the installer is
not used or if it fails for some reason, the limit must be raised manually (as a super−
user).

Linux imposes another limit on the maximum memory allowed for use by POSIX mes−
sage queues. A low value of this limit will prevent multiple DMA threads from running
simultaneously.
Rev. 2.3

Navigator BSP User’s Guide Page C−15
C.7 Advanced Implementation Details (continued)

Copy the following two lines to your /etc/security/limits.conf file to raise the
default limit.

The number in the last column can be changed if needed (the value mentioned above
should be enough to support about 20 DMA threads). Consult the 'ulimit' man page or
the limits.conf file for further information. The installer for Navigator BSP on Linux
will modify the limits.conf during installation. If the installer is not used, the limit must
be raised manually (as a superuser). It is necessary to log out and log back in for the
changes in limits.conf to take effect.

Under Windows, the queue depth can be changed through the registry key:

HKEY_LOCAL_MACHINE
 SOFTWARE
 Microsoft
 Windows NT
 CurrentVersion
 Windows
 USERPostMessageLimit

Like other registry changes, this change is permanent and need not be repeated after
reboot. Be careful while changing this limit because a value less than 4000 can result in
system errors and an inability to log in. Always take a backup of the registry prior to
changing any keys in it.

If the queue depth is insufficient (too many messages are being sent in rapid succes−
sion), some of the messages will get dropped and cause malfunctions in DMA threads.
This scenario is detected in the DMA interrupt handler and a notification is displayed
on the console.

Taking the ADC as an example, when DMA is in progress and one of the buffers is
filled, an interrupt is generated by the hardware. This interrupt is serviced by the
driver and the library's DMA interrupt handler is invoked. If the user has also enabled
DMA interrupts, the library's DMA interrupt handler calls the user's interrupt handler
before proceeding. After returning from user code, the library's DMA interrupt handler
sends an asynchronous message to the DMA thread regarding the buffer being filled
and then quickly exits.

The DMA interrupt handler does not wait for an acknowledgment of message receipt
by the DMA thread. Apart from the messages sent by the DMA interrupt handler, all
other messages are acknowledged by the DMA thread. Code sending non−interrupt
messages is blocked until the DMA thread acknowledges the receipt.

* hard msgqueue 4915200
* soft msgqueue 4915200
Rev. 2.3

Page C−16 Navigator BSP User’s Guide
C.7 Advanced Implementation Details (continued)

To avoid a deadlock, do not call NAV_DmaStart() or NAV_DmaStop() from within the DMA
callback handler, because then the thread would start waiting on a semaphore released
by the thread itself. The interrupt handler and message dispatcher implementations are
present in the nav_dma_common.c file.

A DMA thread is normally waiting for a message to arrive. There are two states in
which the thread listens for messages: DMA started and DMA not started. When created,
the thread is in DMA not started state and will wait indefinitely for a message to arrive.

When the application calls NAV_DmaStart(), a message arrives with the command START
and the thread switches its state to DMA started. In this state, it only waits as long as the
user−supplied DMA timeout for a message to arrive. If no message arrives within this
period, it implies that no interrupt was received and that DMA has timed out.

The user−supplied DMA callback handler function is then invoked with a status code
denoting the timeout condition. When the application calls NAV_DmaStop(), a message
arrives with the command STOP and the thread switches its state back to DMA not
started.

Similarly, when the DMA thread receives the message about a recently filled buffer, it
invokes the user−supplied DMA callback handler function with a status code denoting
this condition. The status code supplied with any callback denotes the situation that
prompted the callback. Status codes can come OR'ed together to signify one or more
conditions occurring simultaneously.

Based on this status, the user code can decide which action to take. If the main applica−
tion thread ends DMA operation by calling NAV_DmaCleanup(), the library notifies the
DMA thread via another message carrying the command QUIT, and the thread then exits
on receipt of such a message. The implementation for the DMA thread is present in the
nav_dmathread.c file.

There is no provision in the library to easily override the way the DMA descriptors are
set up. This is because the existing DMA callback mechanism relies on the descriptors
being set up in a specific way. If DMA callbacks are not being used, the implementation
in NAV_DmaSetupDescriptorList() can be changed to fit unique requirements.
Rev. 2.3

	Table of Contents
	Chapter 1: Introduction
	1.1 Navigator BSP: Part of the Navigator Design Suite
	1.2 Documentation for the Navigator Design Suite
	1.3 System Requirements for the Navigator BSP
	1.3.1 Windows
	1.3.2 Linux

	Chapter 2: Understanding the Navigator Design Suite
	2.1 The Navigator Design Suite
	2.2 Use Case Scenarios for the Navigator Design Suite
	2.2.1 Scenario 1: No FPGA Customization Needed
	2.2.2 Scenario 2: Customizing the FPGA IP

	2.3 The Navigator FDK
	2.3.1 The AXI4 Standard
	2.3.2 The IP Integrator
	2.3.3 The Role of Navigator BSP

	2.4 “Building Block” FPGA Design and Layered BSP Architecture
	2.5 BSP Library Layers
	2.5.1 IP Block / Hardware Layer
	2.5.2 Board-Specific / PCIe Support / Utility Layer
	2.5.3 High-Level API Layer
	2.5.4 Application Layer

	Chapter 3: Installing the Navigator BSP
	3.1 Introduction
	3.2 BSP Components
	3.3 Windows Installation Procedures
	3.3.1 Step 1: Install the Navigator Driver
	3.3.2 Step 2: Install the Navigator Board Support Package
	3.3.3 Step 3: Install the Navigator Example Programs
	3.3.4 Step 4 : Install the LabVIEW Runtime Engine
	3.3.5 Step 5: Windows Hardware Initialization
	3.3.6 How to Manually Install and Uninstall the Navigator BSP Device Driver
	3.3.6.1 Manually Installing the Driver
	3.3.6.2 Manually Uninstalling the Driver

	3.4 Linux Installation Procedures
	3.4.1 Step 1: Prepare for the Installation
	3.4.2 Step 2: Install the Navigator Driver
	3.4.3 Step 3: Install the Navigator Board Support Package
	3.4.4 Step 4: Install the Navigator Example Programs
	3.4.5 Removing or Upgrading the Installed Packages
	3.4.6 How to Manually Install the Navigator Packages
	3.4.6.1 Extract the Driver Package from the Distribution Disc
	3.4.6.2 Set up the Environment Variables for the Driver Package
	3.4.6.3 Build and Install the Driver Package
	3.4.6.4 Extract the BSP Package from the Distribution Disc
	3.4.6.5 Set up the Environment Variables for the BSP Package
	3.4.6.6 Extract the Example Programs from the Distribution Disc

	3.4.7 Installing the Driver for ReadyFlow Alongside the Driver for Navigator

	Chapter 4: Navigator BSP Files
	4.1 Navigator BSP Directory Structure
	4.2 How the Navigator BSP API Reference is Organized
	4.3 BSP Files and IP Core Files Listed by Topic

	Chapter 5: Building Navigator BSP Libraries
	5.1 Introduction
	5.2 Windows Procedures
	5.2.1 Navigator Libraries
	5.2.2 Building Libraries Using Msbuild
	5.2.3 Building Libraries Using Microsoft Visual Studio 2015
	5.2.3.1 Loading the Project
	5.2.3.2 Building the Project

	5.3 Linux Procedures
	5.3.1 Navigator Libraries
	5.3.2 Building the Libraries
	5.3.3 Building Libraries Using Eclipse IDE for C/C++
	5.3.3.1 Loading the Project
	5.3.3.2 Building the Project

	Chapter 6: Building Navigator BSP Example Programs
	6.1 Introduction
	6.2 Windows Procedures
	6.2.1 Building Example Programs Using Msbuild
	6.2.2 Building Example Programs Using Microsoft Visual Studio
	6.2.2.1 Loading a Project
	6.2.2.2 Building a Project
	6.2.2.3 Executing an Example Program

	6.3 Linux Procedures
	6.3.1 Building the Example Programs from the Command Line
	6.3.2 Building Example Programs Using Eclipse IDE for C/C++
	6.3.2.1 Loading the Project
	6.3.2.2 Building the Project
	6.3.2.3 Executing an Example Program from the Project

	6.3.3 Creating an Eclipse Project for Custom Applications

	Chapter 7: Anatomy of a Typical Application
	7.1 Obtain Program Arguments
	7.2 Initialize the Device Driver
	7.3 Open a Board
	7.4 Initialize Application-Specific Resources
	7.5 Set Up Board Resources
	7.6 Dump the Register State for Debugging Purposes
	7.7 Start the Data Flow
	7.8 Manage Data Transfer
	7.9 Handle Hardware Interrupts
	7.10 Stop the Data Flow
	7.11 Free up the Resources
	7.12 Close the Board
	7.13 Uninitialize the Driver
	7.14 Exit the Application

	Chapter 8: Adding an IP Core to the Navigator BSP
	8.1 Introduction
	8.2 Create Your Library Files
	8.3 Add Your Files to the Library

	Chapter 9: Troubleshooting
	9.1 Cannot run the examples’ executable (Windows)
	9.2 DMA Thread cannot be created (Linux)
	9.3 Installing LabVIEW RTE on non-RPM-based systems (Linux)
	9.4 Illegible fonts in Navigator Signal Viewer (Linux)
	9.5 Windows 10 update may cause driver and reserve memory issues

	Appendix A: Navigator BSP Command Line Utility
	A.1 Introduction
	A.2 List of Command-Line Arguments
	A.3 Using Command-Line Arguments

	Appendix B: Navigator Signal Viewer
	B.1 Introduction
	B.2 Description of the Signal Viewer Software
	B.2.1 The Viewer Client
	B.2.2 The Viewer Server

	B.3 Sample Programming Scenario
	B.4 Signal Viewer Operation
	B.4.1 Resume, Pause and Close
	B.4.2 Channel, Server, and Board Model
	B.4.3 Amplitude Calculator
	B.4.4 Signal Characteristics
	B.4.5 Distortion Calculator
	B.4.6 Tuning Frequency, FFT Size, and Resolution Bandwidth
	B.4.7 Spectrum Averaging
	B.4.8 Display Zooming
	B.4.8.1 Horizontal Zoom
	B.4.8.2 Vertical Zoom
	B.4.8.3 Windowed Zoom
	B.4.8.4 Full Screen
	B.4.8.5 Point Zoom
	B.4.8.6 Point Shrink

	B.4.9 Display Panning
	B.4.10 Reset Scale - Oscilloscope and Spectrum Analyzer Displays
	B.4.11 Cursor Operation

	Appendix C: DMA Callbacks
	C.1 Background and Usage
	C.2 Scenario 1: Signal Recorder
	C.3 Scenario 2: Single Snapshot
	C.4 Scenario 3: Repeated Snapshots
	C.5 Scenario 4: RADAR Receiver
	C.6 Scenario 5: Custom Implementation
	C.7 Advanced Implementation Details

